# reinforcementTestClasses.py # --------------------------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and Pieter # Abbeel in Spring 2013. # For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html import testClasses import random, math, traceback, sys, os import layout, textDisplay, pacman, gridworld import time from util import Counter, TimeoutFunction, FixedRandom from collections import defaultdict from pprint import PrettyPrinter from hashlib import sha1 pp = PrettyPrinter() VERBOSE = False import gridworld LIVINGREWARD = -0.1 NOISE = 0.2 class ValueIterationTest(testClasses.TestCase): def __init__(self, question, testDict): super(ValueIterationTest, self).__init__(question, testDict) self.discount = float(testDict['discount']) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) iterations = int(testDict['valueIterations']) if 'noise' in testDict: self.grid.setNoise(float(testDict['noise'])) if 'livingReward' in testDict: self.grid.setLivingReward(float(testDict['livingReward'])) maxPreIterations = 10 self.numsIterationsForDisplay = range(min(iterations, maxPreIterations)) self.testOutFile = testDict['test_out_file'] if maxPreIterations < iterations: self.numsIterationsForDisplay.append(iterations) def writeFailureFile(self, string): with open(self.testOutFile, 'w') as handle: handle.write(string) def removeFailureFileIfExists(self): if os.path.exists(self.testOutFile): os.remove(self.testOutFile) def execute(self, grades, moduleDict, solutionDict): failureOutputFileString = '' failureOutputStdString = '' for n in self.numsIterationsForDisplay: checkPolicy = (n == self.numsIterationsForDisplay[-1]) testPass, stdOutString, fileOutString = self.executeNIterations(grades, moduleDict, solutionDict, n, checkPolicy) failureOutputStdString += stdOutString failureOutputFileString += fileOutString if not testPass: self.addMessage(failureOutputStdString) self.addMessage('For more details to help you debug, see test output file %s\n\n' % self.testOutFile) self.writeFailureFile(failureOutputFileString) return self.testFail(grades) self.removeFailureFileIfExists() return self.testPass(grades) def executeNIterations(self, grades, moduleDict, solutionDict, n, checkPolicy): testPass = True valuesPretty, qValuesPretty, actions, policyPretty = self.runAgent(moduleDict, n) stdOutString = '' fileOutString = '' valuesKey = "values_k_%d" % n if self.comparePrettyValues(valuesPretty, solutionDict[valuesKey]): fileOutString += "Values at iteration %d are correct.\n" % n fileOutString += " Student/correct solution:\n %s\n" % self.prettyValueSolutionString(valuesKey, valuesPretty) else: testPass = False outString = "Values at iteration %d are NOT correct.\n" % n outString += " Student solution:\n %s\n" % self.prettyValueSolutionString(valuesKey, valuesPretty) outString += " Correct solution:\n %s\n" % self.prettyValueSolutionString(valuesKey, solutionDict[valuesKey]) stdOutString += outString fileOutString += outString for action in actions: qValuesKey = 'q_values_k_%d_action_%s' % (n, action) qValues = qValuesPretty[action] if self.comparePrettyValues(qValues, solutionDict[qValuesKey]): fileOutString += "Q-Values at iteration %d for action %s are correct.\n" % (n, action) fileOutString += " Student/correct solution:\n %s\n" % self.prettyValueSolutionString(qValuesKey, qValues) else: testPass = False outString = "Q-Values at iteration %d for action %s are NOT correct.\n" % (n, action) outString += " Student solution:\n %s\n" % self.prettyValueSolutionString(qValuesKey, qValues) outString += " Correct solution:\n %s\n" % self.prettyValueSolutionString(qValuesKey, solutionDict[qValuesKey]) stdOutString += outString fileOutString += outString if checkPolicy: if not self.comparePrettyValues(policyPretty, solutionDict['policy']): testPass = False outString = "Policy is NOT correct.\n" outString += " Student solution:\n %s\n" % self.prettyValueSolutionString('policy', policyPretty) outString += " Correct solution:\n %s\n" % self.prettyValueSolutionString('policy', solutionDict['policy']) stdOutString += outString fileOutString += outString return testPass, stdOutString, fileOutString def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: policyPretty = '' actions = [] for n in self.numsIterationsForDisplay: valuesPretty, qValuesPretty, actions, policyPretty = self.runAgent(moduleDict, n) handle.write(self.prettyValueSolutionString('values_k_%d' % n, valuesPretty)) for action in actions: handle.write(self.prettyValueSolutionString('q_values_k_%d_action_%s' % (n, action), qValuesPretty[action])) handle.write(self.prettyValueSolutionString('policy', policyPretty)) handle.write(self.prettyValueSolutionString('actions', '\n'.join(actions) + '\n')) return True def runAgent(self, moduleDict, numIterations): agent = moduleDict['valueIterationAgents'].ValueIterationAgent(self.grid, discount=self.discount, iterations=numIterations) states = self.grid.getStates() actions = list(reduce(lambda a, b: set(a).union(b), [self.grid.getPossibleActions(state) for state in states])) values = {} qValues = {} policy = {} for state in states: values[state] = agent.getValue(state) policy[state] = agent.computeActionFromValues(state) possibleActions = self.grid.getPossibleActions(state) for action in actions: if not qValues.has_key(action): qValues[action] = {} if action in possibleActions: qValues[action][state] = agent.computeQValueFromValues(state, action) else: qValues[action][state] = None valuesPretty = self.prettyValues(values) policyPretty = self.prettyPolicy(policy) qValuesPretty = {} for action in actions: qValuesPretty[action] = self.prettyValues(qValues[action]) return (valuesPretty, qValuesPretty, actions, policyPretty) def prettyPrint(self, elements, formatString): pretty = '' states = self.grid.getStates() for ybar in range(self.grid.grid.height): y = self.grid.grid.height-1-ybar row = [] for x in range(self.grid.grid.width): if (x, y) in states: value = elements[(x, y)] if value is None: row.append(' illegal') else: row.append(formatString.format(elements[(x,y)])) else: row.append('_' * 10) pretty += ' %s\n' % (" ".join(row), ) pretty += '\n' return pretty def prettyValues(self, values): return self.prettyPrint(values, '{0:10.4f}') def prettyPolicy(self, policy): return self.prettyPrint(policy, '{0:10s}') def prettyValueSolutionString(self, name, pretty): return '%s: """\n%s\n"""\n\n' % (name, pretty.rstrip()) def comparePrettyValues(self, aPretty, bPretty, tolerance=0.01): aList = self.parsePrettyValues(aPretty) bList = self.parsePrettyValues(bPretty) if len(aList) != len(bList): return False for a, b in zip(aList, bList): try: aNum = float(a) bNum = float(b) # error = abs((aNum - bNum) / ((aNum + bNum) / 2.0)) error = abs(aNum - bNum) if error > tolerance: return False except ValueError: if a.strip() != b.strip(): return False return True def parsePrettyValues(self, pretty): values = pretty.split() return values class ApproximateQLearningTest(testClasses.TestCase): def __init__(self, question, testDict): super(ApproximateQLearningTest, self).__init__(question, testDict) self.discount = float(testDict['discount']) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) if 'noise' in testDict: self.grid.setNoise(float(testDict['noise'])) if 'livingReward' in testDict: self.grid.setLivingReward(float(testDict['livingReward'])) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) self.env = gridworld.GridworldEnvironment(self.grid) self.epsilon = float(testDict['epsilon']) self.learningRate = float(testDict['learningRate']) self.extractor = 'IdentityExtractor' if 'extractor' in testDict: self.extractor = testDict['extractor'] self.opts = {'actionFn': self.env.getPossibleActions, 'epsilon': self.epsilon, 'gamma': self.discount, 'alpha': self.learningRate} numExperiences = int(testDict['numExperiences']) maxPreExperiences = 10 self.numsExperiencesForDisplay = range(min(numExperiences, maxPreExperiences)) self.testOutFile = testDict['test_out_file'] if maxPreExperiences < numExperiences: self.numsExperiencesForDisplay.append(numExperiences) def writeFailureFile(self, string): with open(self.testOutFile, 'w') as handle: handle.write(string) def removeFailureFileIfExists(self): if os.path.exists(self.testOutFile): os.remove(self.testOutFile) def execute(self, grades, moduleDict, solutionDict): failureOutputFileString = '' failureOutputStdString = '' for n in self.numsExperiencesForDisplay: testPass, stdOutString, fileOutString = self.executeNExperiences(grades, moduleDict, solutionDict, n) failureOutputStdString += stdOutString failureOutputFileString += fileOutString if not testPass: self.addMessage(failureOutputStdString) self.addMessage('For more details to help you debug, see test output file %s\n\n' % self.testOutFile) self.writeFailureFile(failureOutputFileString) return self.testFail(grades) self.removeFailureFileIfExists() return self.testPass(grades) def executeNExperiences(self, grades, moduleDict, solutionDict, n): testPass = True qValuesPretty, weights, actions, lastExperience = self.runAgent(moduleDict, n) stdOutString = '' fileOutString = "==================== Iteration %d ====================\n" % n if lastExperience is not None: fileOutString += "Agent observed the transition (startState = %s, action = %s, endState = %s, reward = %f)\n\n" % lastExperience weightsKey = 'weights_k_%d' % n if weights == eval(solutionDict[weightsKey]): fileOutString += "Weights at iteration %d are correct." % n fileOutString += " Student/correct solution:\n\n%s\n\n" % pp.pformat(weights) for action in actions: qValuesKey = 'q_values_k_%d_action_%s' % (n, action) qValues = qValuesPretty[action] if self.comparePrettyValues(qValues, solutionDict[qValuesKey]): fileOutString += "Q-Values at iteration %d for action '%s' are correct." % (n, action) fileOutString += " Student/correct solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, qValues) else: testPass = False outString = "Q-Values at iteration %d for action '%s' are NOT correct." % (n, action) outString += " Student solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, qValues) outString += " Correct solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, solutionDict[qValuesKey]) stdOutString += outString fileOutString += outString return testPass, stdOutString, fileOutString def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: for n in self.numsExperiencesForDisplay: qValuesPretty, weights, actions, _ = self.runAgent(moduleDict, n) handle.write(self.prettyValueSolutionString('weights_k_%d' % n, pp.pformat(weights))) for action in actions: handle.write(self.prettyValueSolutionString('q_values_k_%d_action_%s' % (n, action), qValuesPretty[action])) return True def runAgent(self, moduleDict, numExperiences): agent = moduleDict['qlearningAgents'].ApproximateQAgent(extractor=self.extractor, **self.opts) states = filter(lambda state : len(self.grid.getPossibleActions(state)) > 0, self.grid.getStates()) states.sort() randObj = FixedRandom().random # choose a random start state and a random possible action from that state # get the next state and reward from the transition function lastExperience = None for i in range(numExperiences): startState = randObj.choice(states) action = randObj.choice(self.grid.getPossibleActions(startState)) (endState, reward) = self.env.getRandomNextState(startState, action, randObj=randObj) lastExperience = (startState, action, endState, reward) agent.update(*lastExperience) actions = list(reduce(lambda a, b: set(a).union(b), [self.grid.getPossibleActions(state) for state in states])) qValues = {} weights = agent.getWeights() for state in states: possibleActions = self.grid.getPossibleActions(state) for action in actions: if not qValues.has_key(action): qValues[action] = {} if action in possibleActions: qValues[action][state] = agent.getQValue(state, action) else: qValues[action][state] = None qValuesPretty = {} for action in actions: qValuesPretty[action] = self.prettyValues(qValues[action]) return (qValuesPretty, weights, actions, lastExperience) def prettyPrint(self, elements, formatString): pretty = '' states = self.grid.getStates() for ybar in range(self.grid.grid.height): y = self.grid.grid.height-1-ybar row = [] for x in range(self.grid.grid.width): if (x, y) in states: value = elements[(x, y)] if value is None: row.append(' illegal') else: row.append(formatString.format(elements[(x,y)])) else: row.append('_' * 10) pretty += ' %s\n' % (" ".join(row), ) pretty += '\n' return pretty def prettyValues(self, values): return self.prettyPrint(values, '{0:10.4f}') def prettyPolicy(self, policy): return self.prettyPrint(policy, '{0:10s}') def prettyValueSolutionString(self, name, pretty): return '%s: """\n%s\n"""\n\n' % (name, pretty.rstrip()) def comparePrettyValues(self, aPretty, bPretty, tolerance=0.01): aList = self.parsePrettyValues(aPretty) bList = self.parsePrettyValues(bPretty) if len(aList) != len(bList): return False for a, b in zip(aList, bList): try: aNum = float(a) bNum = float(b) # error = abs((aNum - bNum) / ((aNum + bNum) / 2.0)) error = abs(aNum - bNum) if error > tolerance: return False except ValueError: if a.strip() != b.strip(): return False return True def parsePrettyValues(self, pretty): values = pretty.split() return values class QLearningTest(testClasses.TestCase): def __init__(self, question, testDict): super(QLearningTest, self).__init__(question, testDict) self.discount = float(testDict['discount']) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) if 'noise' in testDict: self.grid.setNoise(float(testDict['noise'])) if 'livingReward' in testDict: self.grid.setLivingReward(float(testDict['livingReward'])) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) self.env = gridworld.GridworldEnvironment(self.grid) self.epsilon = float(testDict['epsilon']) self.learningRate = float(testDict['learningRate']) self.opts = {'actionFn': self.env.getPossibleActions, 'epsilon': self.epsilon, 'gamma': self.discount, 'alpha': self.learningRate} numExperiences = int(testDict['numExperiences']) maxPreExperiences = 10 self.numsExperiencesForDisplay = range(min(numExperiences, maxPreExperiences)) self.testOutFile = testDict['test_out_file'] if maxPreExperiences < numExperiences: self.numsExperiencesForDisplay.append(numExperiences) def writeFailureFile(self, string): with open(self.testOutFile, 'w') as handle: handle.write(string) def removeFailureFileIfExists(self): if os.path.exists(self.testOutFile): os.remove(self.testOutFile) def execute(self, grades, moduleDict, solutionDict): failureOutputFileString = '' failureOutputStdString = '' for n in self.numsExperiencesForDisplay: checkValuesAndPolicy = (n == self.numsExperiencesForDisplay[-1]) testPass, stdOutString, fileOutString = self.executeNExperiences(grades, moduleDict, solutionDict, n, checkValuesAndPolicy) failureOutputStdString += stdOutString failureOutputFileString += fileOutString if not testPass: self.addMessage(failureOutputStdString) self.addMessage('For more details to help you debug, see test output file %s\n\n' % self.testOutFile) self.writeFailureFile(failureOutputFileString) return self.testFail(grades) self.removeFailureFileIfExists() return self.testPass(grades) def executeNExperiences(self, grades, moduleDict, solutionDict, n, checkValuesAndPolicy): testPass = True valuesPretty, qValuesPretty, actions, policyPretty, lastExperience = self.runAgent(moduleDict, n) stdOutString = '' fileOutString = "==================== Iteration %d ====================\n" % n if lastExperience is not None: fileOutString += "Agent observed the transition (startState = %s, action = %s, endState = %s, reward = %f)\n\n\n" % lastExperience for action in actions: qValuesKey = 'q_values_k_%d_action_%s' % (n, action) qValues = qValuesPretty[action] if self.comparePrettyValues(qValues, solutionDict[qValuesKey]): fileOutString += "Q-Values at iteration %d for action '%s' are correct." % (n, action) fileOutString += " Student/correct solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, qValues) else: testPass = False outString = "Q-Values at iteration %d for action '%s' are NOT correct." % (n, action) outString += " Student solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, qValues) outString += " Correct solution:\n\t%s" % self.prettyValueSolutionString(qValuesKey, solutionDict[qValuesKey]) stdOutString += outString fileOutString += outString if checkValuesAndPolicy: if not self.comparePrettyValues(valuesPretty, solutionDict['values']): testPass = False outString = "Values are NOT correct." outString += " Student solution:\n\t%s" % self.prettyValueSolutionString('values', valuesPretty) outString += " Correct solution:\n\t%s" % self.prettyValueSolutionString('values', solutionDict['values']) stdOutString += outString fileOutString += outString if not self.comparePrettyValues(policyPretty, solutionDict['policy']): testPass = False outString = "Policy is NOT correct." outString += " Student solution:\n\t%s" % self.prettyValueSolutionString('policy', policyPretty) outString += " Correct solution:\n\t%s" % self.prettyValueSolutionString('policy', solutionDict['policy']) stdOutString += outString fileOutString += outString return testPass, stdOutString, fileOutString def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: valuesPretty = '' policyPretty = '' for n in self.numsExperiencesForDisplay: valuesPretty, qValuesPretty, actions, policyPretty, _ = self.runAgent(moduleDict, n) for action in actions: handle.write(self.prettyValueSolutionString('q_values_k_%d_action_%s' % (n, action), qValuesPretty[action])) handle.write(self.prettyValueSolutionString('values', valuesPretty)) handle.write(self.prettyValueSolutionString('policy', policyPretty)) return True def runAgent(self, moduleDict, numExperiences): agent = moduleDict['qlearningAgents'].QLearningAgent(**self.opts) states = filter(lambda state : len(self.grid.getPossibleActions(state)) > 0, self.grid.getStates()) states.sort() randObj = FixedRandom().random # choose a random start state and a random possible action from that state # get the next state and reward from the transition function lastExperience = None for i in range(numExperiences): startState = randObj.choice(states) action = randObj.choice(self.grid.getPossibleActions(startState)) (endState, reward) = self.env.getRandomNextState(startState, action, randObj=randObj) lastExperience = (startState, action, endState, reward) agent.update(*lastExperience) actions = list(reduce(lambda a, b: set(a).union(b), [self.grid.getPossibleActions(state) for state in states])) values = {} qValues = {} policy = {} for state in states: values[state] = agent.computeValueFromQValues(state) policy[state] = agent.computeActionFromQValues(state) possibleActions = self.grid.getPossibleActions(state) for action in actions: if not qValues.has_key(action): qValues[action] = {} if action in possibleActions: qValues[action][state] = agent.getQValue(state, action) else: qValues[action][state] = None valuesPretty = self.prettyValues(values) policyPretty = self.prettyPolicy(policy) qValuesPretty = {} for action in actions: qValuesPretty[action] = self.prettyValues(qValues[action]) return (valuesPretty, qValuesPretty, actions, policyPretty, lastExperience) def prettyPrint(self, elements, formatString): pretty = '' states = self.grid.getStates() for ybar in range(self.grid.grid.height): y = self.grid.grid.height-1-ybar row = [] for x in range(self.grid.grid.width): if (x, y) in states: value = elements[(x, y)] if value is None: row.append(' illegal') else: row.append(formatString.format(elements[(x,y)])) else: row.append('_' * 10) pretty += ' %s\n' % (" ".join(row), ) pretty += '\n' return pretty def prettyValues(self, values): return self.prettyPrint(values, '{0:10.4f}') def prettyPolicy(self, policy): return self.prettyPrint(policy, '{0:10s}') def prettyValueSolutionString(self, name, pretty): return '%s: """\n%s\n"""\n\n' % (name, pretty.rstrip()) def comparePrettyValues(self, aPretty, bPretty, tolerance=0.01): aList = self.parsePrettyValues(aPretty) bList = self.parsePrettyValues(bPretty) if len(aList) != len(bList): return False for a, b in zip(aList, bList): try: aNum = float(a) bNum = float(b) # error = abs((aNum - bNum) / ((aNum + bNum) / 2.0)) error = abs(aNum - bNum) if error > tolerance: return False except ValueError: if a.strip() != b.strip(): return False return True def parsePrettyValues(self, pretty): values = pretty.split() return values class EpsilonGreedyTest(testClasses.TestCase): def __init__(self, question, testDict): super(EpsilonGreedyTest, self).__init__(question, testDict) self.discount = float(testDict['discount']) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) if 'noise' in testDict: self.grid.setNoise(float(testDict['noise'])) if 'livingReward' in testDict: self.grid.setLivingReward(float(testDict['livingReward'])) self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) self.env = gridworld.GridworldEnvironment(self.grid) self.epsilon = float(testDict['epsilon']) self.learningRate = float(testDict['learningRate']) self.numExperiences = int(testDict['numExperiences']) self.numIterations = int(testDict['iterations']) self.opts = {'actionFn': self.env.getPossibleActions, 'epsilon': self.epsilon, 'gamma': self.discount, 'alpha': self.learningRate} def execute(self, grades, moduleDict, solutionDict): if self.testEpsilonGreedy(moduleDict): return self.testPass(grades) else: return self.testFail(grades) def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: handle.write('# This is the solution file for %s.\n' % self.path) handle.write('# File intentionally blank.\n') return True def runAgent(self, moduleDict): agent = moduleDict['qlearningAgents'].QLearningAgent(**self.opts) states = filter(lambda state : len(self.grid.getPossibleActions(state)) > 0, self.grid.getStates()) states.sort() randObj = FixedRandom().random # choose a random start state and a random possible action from that state # get the next state and reward from the transition function for i in range(self.numExperiences): startState = randObj.choice(states) action = randObj.choice(self.grid.getPossibleActions(startState)) (endState, reward) = self.env.getRandomNextState(startState, action, randObj=randObj) agent.update(startState, action, endState, reward) return agent def testEpsilonGreedy(self, moduleDict, tolerance=0.025): agent = self.runAgent(moduleDict) for state in self.grid.getStates(): numLegalActions = len(agent.getLegalActions(state)) if numLegalActions <= 1: continue numGreedyChoices = 0 optimalAction = agent.computeActionFromQValues(state) for iteration in range(self.numIterations): # assume that their computeActionFromQValues implementation is correct (q4 tests this) if agent.getAction(state) == optimalAction: numGreedyChoices += 1 # e = epsilon, g = # greedy actions, n = numIterations, k = numLegalActions # g = n * [(1-e) + e/k] -> e = (n - g) / (n - n/k) empiricalEpsilonNumerator = self.numIterations - numGreedyChoices empiricalEpsilonDenominator = self.numIterations - self.numIterations / float(numLegalActions) empiricalEpsilon = empiricalEpsilonNumerator / empiricalEpsilonDenominator error = abs(empiricalEpsilon - self.epsilon) if error > tolerance: self.addMessage("Epsilon-greedy action selection is not correct.") self.addMessage("Actual epsilon = %f; student empirical epsilon = %f; error = %f > tolerance = %f" % (self.epsilon, empiricalEpsilon, error, tolerance)) return False return True ### q6 class Question6Test(testClasses.TestCase): def __init__(self, question, testDict): super(Question6Test, self).__init__(question, testDict) def execute(self, grades, moduleDict, solutionDict): studentSolution = moduleDict['analysis'].question6() studentSolution = str(studentSolution).strip().lower() hashedSolution = sha1(studentSolution).hexdigest() if hashedSolution == '46729c96bb1e4081fdc81a8ff74b3e5db8fba415': return self.testPass(grades) else: self.addMessage("Solution is not correct.") self.addMessage(" Student solution: %s" % (studentSolution,)) return self.testFail(grades) def writeSolution(self, moduleDict, filePath): handle = open(filePath, 'w') handle.write('# This is the solution file for %s.\n' % self.path) handle.write('# File intentionally blank.\n') handle.close() return True ### q7/q8 ### ===== ## Average wins of a pacman agent class EvalAgentTest(testClasses.TestCase): def __init__(self, question, testDict): super(EvalAgentTest, self).__init__(question, testDict) self.pacmanParams = testDict['pacmanParams'] self.scoreMinimum = int(testDict['scoreMinimum']) if 'scoreMinimum' in testDict else None self.nonTimeoutMinimum = int(testDict['nonTimeoutMinimum']) if 'nonTimeoutMinimum' in testDict else None self.winsMinimum = int(testDict['winsMinimum']) if 'winsMinimum' in testDict else None self.scoreThresholds = [int(s) for s in testDict.get('scoreThresholds','').split()] self.nonTimeoutThresholds = [int(s) for s in testDict.get('nonTimeoutThresholds','').split()] self.winsThresholds = [int(s) for s in testDict.get('winsThresholds','').split()] self.maxPoints = sum([len(t) for t in [self.scoreThresholds, self.nonTimeoutThresholds, self.winsThresholds]]) def execute(self, grades, moduleDict, solutionDict): self.addMessage('Grading agent using command: python pacman.py %s'% (self.pacmanParams,)) startTime = time.time() games = pacman.runGames(** pacman.readCommand(self.pacmanParams.split(' '))) totalTime = time.time() - startTime numGames = len(games) stats = {'time': totalTime, 'wins': [g.state.isWin() for g in games].count(True), 'games': games, 'scores': [g.state.getScore() for g in games], 'timeouts': [g.agentTimeout for g in games].count(True), 'crashes': [g.agentCrashed for g in games].count(True)} averageScore = sum(stats['scores']) / float(len(stats['scores'])) nonTimeouts = numGames - stats['timeouts'] wins = stats['wins'] def gradeThreshold(value, minimum, thresholds, name): points = 0 passed = (minimum == None) or (value >= minimum) if passed: for t in thresholds: if value >= t: points += 1 return (passed, points, value, minimum, thresholds, name) results = [gradeThreshold(averageScore, self.scoreMinimum, self.scoreThresholds, "average score"), gradeThreshold(nonTimeouts, self.nonTimeoutMinimum, self.nonTimeoutThresholds, "games not timed out"), gradeThreshold(wins, self.winsMinimum, self.winsThresholds, "wins")] totalPoints = 0 for passed, points, value, minimum, thresholds, name in results: if minimum == None and len(thresholds)==0: continue # print passed, points, value, minimum, thresholds, name totalPoints += points if not passed: assert points == 0 self.addMessage("%s %s (fail: below minimum value %s)" % (value, name, minimum)) else: self.addMessage("%s %s (%s of %s points)" % (value, name, points, len(thresholds))) if minimum != None: self.addMessage(" Grading scheme:") self.addMessage(" < %s: fail" % (minimum,)) if len(thresholds)==0 or minimum != thresholds[0]: self.addMessage(" >= %s: 0 points" % (minimum,)) for idx, threshold in enumerate(thresholds): self.addMessage(" >= %s: %s points" % (threshold, idx+1)) elif len(thresholds) > 0: self.addMessage(" Grading scheme:") self.addMessage(" < %s: 0 points" % (thresholds[0],)) for idx, threshold in enumerate(thresholds): self.addMessage(" >= %s: %s points" % (threshold, idx+1)) if any([not passed for passed, _, _, _, _, _ in results]): totalPoints = 0 return self.testPartial(grades, totalPoints, self.maxPoints) def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: handle.write('# This is the solution file for %s.\n' % self.path) handle.write('# File intentionally blank.\n') return True ### q2/q3 ### ===== ## For each parameter setting, compute the optimal policy, see if it satisfies some properties def followPath(policy, start, numSteps=100): state = start path = [] for i in range(numSteps): if state not in policy: break action = policy[state] path.append("(%s,%s)" % state) if action == 'north': nextState = state[0],state[1]+1 if action == 'south': nextState = state[0],state[1]-1 if action == 'east': nextState = state[0]+1,state[1] if action == 'west': nextState = state[0]-1,state[1] if action == 'exit' or action == None: path.append('TERMINAL_STATE') break state = nextState return path def parseGrid(string): grid = [[entry.strip() for entry in line.split()] for line in string.split('\n')] for row in grid: for x, col in enumerate(row): try: col = int(col) except: pass if col == "_": col = ' ' row[x] = col return gridworld.makeGrid(grid) def computePolicy(moduleDict, grid, discount): valueIterator = moduleDict['valueIterationAgents'].ValueIterationAgent(grid, discount=discount) policy = {} for state in grid.getStates(): policy[state] = valueIterator.computeActionFromValues(state) return policy class GridPolicyTest(testClasses.TestCase): def __init__(self, question, testDict): super(GridPolicyTest, self).__init__(question, testDict) # Function in module in analysis that returns (discount, noise) self.parameterFn = testDict['parameterFn'] self.question2 = testDict.get('question2', 'false').lower() == 'true' # GridWorld specification # _ is empty space # numbers are terminal states with that value # # is a wall # S is a start state # self.gridText = testDict['grid'] self.grid = gridworld.Gridworld(parseGrid(testDict['grid'])) self.gridName = testDict['gridName'] # Policy specification # _ policy choice not checked # N, E, S, W policy action must be north, east, south, west # self.policy = parseGrid(testDict['policy']) # State the most probable path must visit # (x,y) for a particular location; (0,0) is bottom left # terminal for the terminal state self.pathVisits = testDict.get('pathVisits', None) # State the most probable path must not visit # (x,y) for a particular location; (0,0) is bottom left # terminal for the terminal state self.pathNotVisits = testDict.get('pathNotVisits', None) def execute(self, grades, moduleDict, solutionDict): if not hasattr(moduleDict['analysis'], self.parameterFn): self.addMessage('Method not implemented: analysis.%s' % (self.parameterFn,)) return self.testFail(grades) result = getattr(moduleDict['analysis'], self.parameterFn)() if type(result) == str and result.lower()[0:3] == "not": self.addMessage('Actually, it is possible!') return self.testFail(grades) if self.question2: livingReward = None try: discount, noise = result discount = float(discount) noise = float(noise) except: self.addMessage('Did not return a (discount, noise) pair; instead analysis.%s returned: %s' % (self.parameterFn, result)) return self.testFail(grades) if discount != 0.9 and noise != 0.2: self.addMessage('Must change either the discount or the noise, not both. Returned (discount, noise) = %s' % (result,)) return self.testFail(grades) else: try: discount, noise, livingReward = result discount = float(discount) noise = float(noise) livingReward = float(livingReward) except: self.addMessage('Did not return a (discount, noise, living reward) triple; instead analysis.%s returned: %s' % (self.parameterFn, result)) return self.testFail(grades) self.grid.setNoise(noise) if livingReward != None: self.grid.setLivingReward(livingReward) start = self.grid.getStartState() policy = computePolicy(moduleDict, self.grid, discount) ## check policy actionMap = {'N': 'north', 'E': 'east', 'S': 'south', 'W': 'west', 'X': 'exit'} width, height = self.policy.width, self.policy.height policyPassed = True for x in range(width): for y in range(height): if self.policy[x][y] in actionMap and policy[(x,y)] != actionMap[self.policy[x][y]]: differPoint = (x,y) policyPassed = False if not policyPassed: self.addMessage('Policy not correct.') self.addMessage(' Student policy at %s: %s' % (differPoint, policy[differPoint])) self.addMessage(' Correct policy at %s: %s' % (differPoint, actionMap[self.policy[differPoint[0]][differPoint[1]]])) self.addMessage(' Student policy:') self.printPolicy(policy, False) self.addMessage(" Legend: N,S,E,W at states which move north etc, X at states which exit,") self.addMessage(" . at states where the policy is not defined (e.g. walls)") self.addMessage(' Correct policy specification:') self.printPolicy(self.policy, True) self.addMessage(" Legend: N,S,E,W for states in which the student policy must move north etc,") self.addMessage(" _ for states where it doesn't matter what the student policy does.") self.printGridworld() return self.testFail(grades) ## check path path = followPath(policy, self.grid.getStartState()) if self.pathVisits != None and self.pathVisits not in path: self.addMessage('Policy does not visit state %s when moving without noise.' % (self.pathVisits,)) self.addMessage(' States visited: %s' % (path,)) self.addMessage(' Student policy:') self.printPolicy(policy, False) self.addMessage(" Legend: N,S,E,W at states which move north etc, X at states which exit,") self.addMessage(" . at states where policy not defined") self.printGridworld() return self.testFail(grades) if self.pathNotVisits != None and self.pathNotVisits in path: self.addMessage('Policy visits state %s when moving without noise.' % (self.pathNotVisits,)) self.addMessage(' States visited: %s' % (path,)) self.addMessage(' Student policy:') self.printPolicy(policy, False) self.addMessage(" Legend: N,S,E,W at states which move north etc, X at states which exit,") self.addMessage(" . at states where policy not defined") self.printGridworld() return self.testFail(grades) return self.testPass(grades) def printGridworld(self): self.addMessage(' Gridworld:') for line in self.gridText.split('\n'): self.addMessage(' ' + line) self.addMessage(' Legend: # wall, _ empty, S start, numbers terminal states with that reward.') def printPolicy(self, policy, policyTypeIsGrid): if policyTypeIsGrid: legend = {'N': 'N', 'E': 'E', 'S': 'S', 'W': 'W', ' ': '_'} else: legend = {'north': 'N', 'east': 'E', 'south': 'S', 'west': 'W', 'exit': 'X', '.': '.', ' ': '_'} for ybar in range(self.grid.grid.height): y = self.grid.grid.height-1-ybar if policyTypeIsGrid: self.addMessage(" %s" % (" ".join([legend[policy[x][y]] for x in range(self.grid.grid.width)]),)) else: self.addMessage(" %s" % (" ".join([legend[policy.get((x,y), '.')] for x in range(self.grid.grid.width)]),)) # for state in sorted(self.grid.getStates()): # if state != 'TERMINAL_STATE': # self.addMessage(' (%s,%s) %s' % (state[0], state[1], policy[state])) def writeSolution(self, moduleDict, filePath): with open(filePath, 'w') as handle: handle.write('# This is the solution file for %s.\n' % self.path) handle.write('# File intentionally blank.\n') return True