CS343
 Artificial Intelligence

Prof: Peter Stone

Department of Computer Sciences
The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

Logistics

- Next week's readings: utility theory, sequential decision problems

Logistics

- Next week's readings: utility theory, sequential decision problems
- Don'† just answer a question

Logistics

- Next week's readings: utility theory, sequential decision problems
- Don'† just answer a question
- Holte talk on Friday

Logistics

- Next week's readings: utility theory, sequential decision problems
- Don'† just answer a question
- Holte talk on Friday
- Multiagent assignment questions?

Search Assignment

- Mean: 14, stdev: 4.55

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes;

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741
- Question 7 - Diego: 7188 nodes;

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741
- Question 7 - Diego: 7188 nodes; Jacky and Dustin: 5859

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741
- Question 7 - Diego: 7188 nodes; Jacky and Dustin: 5859
- Contest
- Adam: 334; Cemre: 333

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741
- Question 7 - Diego: 7188 nodes; Jacky and Dustin: 5859
- Contest
- Adam: 334; Cemre: 333
- Alex and Jared: 318

Search Assignment

- Mean: 14, stdev: 4.55
- Question 6 - Jacky and Dustin:838 nodes; Diego: 741
- Question 7 - Diego: 7188 nodes; Jacky and Dustin: 5859
- Contest
- Adam: 334; Cemre: 333
- Alex and Jared: 318
- David: 286

Continuous Probabilities

- Player one: set the odds

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet
- I'll flip a fair coin (. 5 prob heads)

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet
- I'll flip a fair coin (. 5 prob heads)
- Now l'll flip a biased coin (. 4 prob heads)

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet
- I'll flip a fair coin (. 5 prob heads)
- Now l'll flip a biased coin (. 4 prob heads)
- Player two: what do you do differently?

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet
- I'll flip a fair coin (. 5 prob heads)
- Now l'll flip a biased coin (. 4 prob heads)
- Player two: what do you do differently?
- Player one: what would you have done differently?

Continuous Probabilities

- Player one: set the odds
- A bet of \$x on heads wins \$y, a bet of \$y on tails wins \$x.
- For simplicity, make x and y sum to 10
- Player two: bet
- I'll flip a fair coin (. 5 prob heads)
- Now l'll flip a biased coin (. 4 prob heads)
- Player two: what do you do differently?
- Player one: what would you have done differently?
- De Finetti's theorem

