game.py (original)


# game.py
# -------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html

from util import *
import time, os
import traceback
  
#######################
# Parts worth reading #
#######################

class Agent:
  """
  An agent must define a getAction method, but may also define the
  following methods which will be called if they exist:

  def registerInitialState(self, state): # inspects the starting state
  """
  def __init__(self, index=0):
    self.index = index

  def getAction(self, state):
    """
    The Agent will receive a GameState (from either {pacman, capture, sonar}.py) and
    must return an action from Directions.{North, South, East, West, Stop}
    """
    raiseNotDefined()

class Directions:
  NORTH = 'North'
  SOUTH = 'South'
  EAST = 'East'
  WEST = 'West'
  STOP = 'Stop'

  LEFT =       {NORTH: WEST,
                 SOUTH: EAST,
                 EAST:  NORTH,
                 WEST:  SOUTH,
                 STOP:  STOP}

  RIGHT =      dict([(y,x) for x, y in LEFT.items()])

  REVERSE = {NORTH: SOUTH,
             SOUTH: NORTH,
             EAST: WEST,
             WEST: EAST,
             STOP: STOP}

class Configuration:
  """
  A Configuration holds the (x,y) coordinate of a character, along with its
  traveling direction.

  The convention for positions, like a graph, is that (0,0) is the lower left corner, x increases
  horizontally and y increases vertically.  Therefore, north is the direction of increasing y, or (0,1).
  """

  def __init__(self, pos, direction):
    self.pos = pos
    self.direction = direction

  def getPosition(self):
    return (self.pos)

  def getDirection(self):
    return self.direction

  def isInteger(self):
    x,y = self.pos
    return x == int(x) and y == int(y)

  def __eq__(self, other):
    if other == None: return False
    return (self.pos == other.pos and self.direction == other.direction)

  def __hash__(self):
    x = hash(self.pos)
    y = hash(self.direction)
    return hash(x + 13 * y)

  def __str__(self):
    return "(x,y)="+str(self.pos)+", "+str(self.direction)

  def generateSuccessor(self, vector):
    """
    Generates a new configuration reached by translating the current
    configuration by the action vector.  This is a low-level call and does
    not attempt to respect the legality of the movement.

    Actions are movement vectors.
    """
    x, y= self.pos
    dx, dy = vector
    direction = Actions.vectorToDirection(vector)
    if direction == Directions.STOP:
      direction = self.direction # There is no stop direction
    return Configuration((x + dx, y+dy), direction)

class AgentState:
  """
  AgentStates hold the state of an agent (configuration, speed, scared, etc).
  """

  def __init__( self, startConfiguration, isPacman ):
    self.start = startConfiguration
    self.configuration = startConfiguration
    self.isPacman = isPacman
    self.scaredTimer = 0

  def __str__( self ):
    if self.isPacman:
      return "Pacman: " + str( self.configuration )
    else:
      return "Ghost: " + str( self.configuration )

  def __eq__( self, other ):
    if other == None:
      return False
    return self.configuration == other.configuration and self.scaredTimer == other.scaredTimer

  def __hash__(self):
    return hash(hash(self.configuration) + 13 * hash(self.scaredTimer))

  def copy( self ):
    state = AgentState( self.start, self.isPacman )
    state.configuration = self.configuration
    state.scaredTimer = self.scaredTimer
    return state

  def getPosition(self):
    if self.configuration == None: return None
    return self.configuration.getPosition()

  def getDirection(self):
    return self.configuration.getDirection()

class Grid:
  """
  A 2-dimensional array of objects backed by a list of lists.  Data is accessed
  via grid[x][y] where (x,y) are positions on a Pacman map with x horizontal,
  y vertical and the origin (0,0) in the bottom left corner.

  The __str__ method constructs an output that is oriented like a pacman board.
  """
  def __init__(self, width, height, initialValue=False, bitRepresentation=None):
    if initialValue not in [False, True]: raise Exception('Grids can only contain booleans')
    self.CELLS_PER_INT = 30

    self.width = width
    self.height = height
    self.data = [[initialValue for y in range(height)] for x in range(width)]
    if bitRepresentation:
      self._unpackBits(bitRepresentation)

  def __getitem__(self, i):
    return self.data[i]

  def __setitem__(self, key, item):
    self.data[key] = item

  def __str__(self):
    out = [[str(self.data[x][y])[0] for x in range(self.width)] for y in range(self.height)]
    out.reverse()
    return '\n'.join([''.join(x) for x in out])

  def __eq__(self, other):
    if other == None: return False
    return self.data == other.data

  def __hash__(self):
    # return hash(str(self))
    base = 1
    h = 0
    for l in self.data:
      for i in l:
        if i:
          h += base
        base *= 2
    return hash(h)

  def copy(self):
    g = Grid(self.width, self.height)
    g.data = [x[:] for x in self.data]
    return g

  def deepCopy(self):
    return self.copy()

  def shallowCopy(self):
    g = Grid(self.width, self.height)
    g.data = self.data
    return g

  def count(self, item =True ):
    return sum([x.count(item) for x in self.data])

  def asList(self, key = True):
    list = []
    for x in range(self.width):
      for y in range(self.height):
        if self[x][y] == key: list.append( (x,y) )
    return list

  def packBits(self):
    """
    Returns an efficient int list representation

    (width, height, bitPackedInts...)
    """
    bits = [self.width, self.height]
    currentInt = 0
    for i in range(self.height * self.width):
      bit = self.CELLS_PER_INT - (i % self.CELLS_PER_INT) - 1
      x, y = self._cellIndexToPosition(i)
      if self[x][y]:
        currentInt += 2 ** bit
      if (i + 1) % self.CELLS_PER_INT == 0:
        bits.append(currentInt)
        currentInt = 0
    bits.append(currentInt)
    return tuple(bits)

  def _cellIndexToPosition(self, index):
    x = index / self.height
    y = index % self.height
    return x, y

  def _unpackBits(self, bits):
    """
    Fills in data from a bit-level representation
    """
    cell = 0
    for packed in bits:
      for bit in self._unpackInt(packed, self.CELLS_PER_INT):
        if cell == self.width * self.height: break
        x, y = self._cellIndexToPosition(cell)
        self[x][y] = bit
        cell += 1

  def _unpackInt(self, packed, size):
    bools = []
    if packed < 0: raise ValueError, "must be a positive integer"
    for i in range(size):
      n = 2 ** (self.CELLS_PER_INT - i - 1)
      if packed >= n:
        bools.append(True)
        packed -= n
      else:
        bools.append(False)
    return bools

def reconstituteGrid(bitRep):
  if type(bitRep) is not type((1,2)):
    return bitRep
  width, height = bitRep[:2]
  return Grid(width, height, bitRepresentation= bitRep[2:])

####################################
# Parts you shouldn't have to read #
####################################

class Actions:
  """
  A collection of static methods for manipulating move actions.
  """
  # Directions
  _directions = {Directions.NORTH: (0, 1),
                 Directions.SOUTH: (0, -1),
                 Directions.EAST:  (1, 0),
                 Directions.WEST:  (-1, 0),
                 Directions.STOP:  (0, 0)}

  _directionsAsList = _directions.items()

  TOLERANCE = .001

  def reverseDirection(action):
    if action == Directions.NORTH:
      return Directions.SOUTH
    if action == Directions.SOUTH:
      return Directions.NORTH
    if action == Directions.EAST:
      return Directions.WEST
    if action == Directions.WEST:
      return Directions.EAST
    return action
  reverseDirection = staticmethod(reverseDirection)

  def vectorToDirection(vector):
    dx, dy = vector
    if dy > 0:
      return Directions.NORTH
    if dy < 0:
      return Directions.SOUTH
    if dx < 0:
      return Directions.WEST
    if dx > 0:
      return Directions.EAST
    return Directions.STOP
  vectorToDirection = staticmethod(vectorToDirection)

  def directionToVector(direction, speed = 1.0):
    dx, dy =  Actions._directions[direction]
    return (dx * speed, dy * speed)
  directionToVector = staticmethod(directionToVector)

  def getPossibleActions(config, walls):
    possible = []
    x, y = config.pos
    x_int, y_int = int(x + 0.5), int(y + 0.5)

    # In between grid points, all agents must continue straight
    if (abs(x - x_int) + abs(y - y_int)  > Actions.TOLERANCE):
      return [config.getDirection()]

    for dir, vec in Actions._directionsAsList:
      dx, dy = vec
      next_y = y_int + dy
      next_x = x_int + dx
      if not walls[next_x][next_y]: possible.append(dir)

    return possible

  getPossibleActions = staticmethod(getPossibleActions)

  def getLegalNeighbors(position, walls):
    x,y = position
    x_int, y_int = int(x + 0.5), int(y + 0.5)
    neighbors = []
    for dir, vec in Actions._directionsAsList:
      dx, dy = vec
      next_x = x_int + dx
      if next_x < 0 or next_x == walls.width: continue
      next_y = y_int + dy
      if next_y < 0 or next_y == walls.height: continue
      if not walls[next_x][next_y]: neighbors.append((next_x, next_y))
    return neighbors
  getLegalNeighbors = staticmethod(getLegalNeighbors)

  def getSuccessor(position, action):
    dx, dy = Actions.directionToVector(action)
    x, y = position
    return (x + dx, y + dy)
  getSuccessor = staticmethod(getSuccessor)

class GameStateData:
  """

  """
  def __init__( self, prevState = None ):
    """
    Generates a new data packet by copying information from its predecessor.
    """
    if prevState != None:
      self.food = prevState.food.shallowCopy()
      self.capsules = prevState.capsules[:]
      self.agentStates = self.copyAgentStates( prevState.agentStates )
      self.layout = prevState.layout
      self._eaten = prevState._eaten
      self.score = prevState.score
    self._foodEaten = None
    self._capsuleEaten = None
    self._agentMoved = None
    self._lose = False
    self._win = False
    self.scoreChange = 0

  def deepCopy( self ):
    state = GameStateData( self )
    state.food = self.food.deepCopy()
    state.layout = self.layout.deepCopy()
    state._agentMoved = self._agentMoved
    state._foodEaten = self._foodEaten
    state._capsuleEaten = self._capsuleEaten
    return state

  def copyAgentStates( self, agentStates ):
    copiedStates = []
    for agentState in agentStates:
      copiedStates.append( agentState.copy() )
    return copiedStates

  def __eq__( self, other ):
    """
    Allows two states to be compared.
    """
    if other == None: return False
    # TODO Check for type of other
    if not self.agentStates == other.agentStates: return False
    if not self.food == other.food: return False
    if not self.capsules == other.capsules: return False
    if not self.score == other.score: return False
    return True

  def __hash__( self ):
    """
    Allows states to be keys of dictionaries.
    """
    for i, state in enumerate( self.agentStates ):
      try:
        int(hash(state))
      except TypeError, e:
        print e
        #hash(state)
    return int((hash(tuple(self.agentStates)) + 13*hash(self.food) + 113* hash(tuple(self.capsules)) + 7 * hash(self.score)) % 1048575 )

  def __str__( self ):
    width, height = self.layout.width, self.layout.height
    map = Grid(width, height)
    if type(self.food) == type((1,2)):
      self.food = reconstituteGrid(self.food)
    for x in range(width):
      for y in range(height):
        food, walls = self.food, self.layout.walls
        map[x][y] = self._foodWallStr(food[x][y], walls[x][y])

    for agentState in self.agentStates:
      if agentState == None: continue
      if agentState.configuration == None: continue
      x,y = [int( i ) for i in nearestPoint( agentState.configuration.pos )]
      agent_dir = agentState.configuration.direction
      if agentState.isPacman:
        map[x][y] = self._pacStr( agent_dir )
      else:
        map[x][y] = self._ghostStr( agent_dir )

    for x, y in self.capsules:
      map[x][y] = 'o'

    return str(map) + ("\nScore: %d\n" % self.score)

  def _foodWallStr( self, hasFood, hasWall ):
    if hasFood:
      return '.'
    elif hasWall:
      return '%'
    else:
      return ' '

  def _pacStr( self, dir ):
    if dir == Directions.NORTH:
      return 'v'
    if dir == Directions.SOUTH:
      return '^'
    if dir == Directions.WEST:
      return '>'
    return '<'

  def _ghostStr( self, dir ):
    return 'G'
    if dir == Directions.NORTH:
      return 'M'
    if dir == Directions.SOUTH:
      return 'W'
    if dir == Directions.WEST:
      return '3'
    return 'E'

  def initialize( self, layout, numGhostAgents ):
    """
    Creates an initial game state from a layout array (see layout.py).
    """
    self.food = layout.food.copy()
    self.capsules = layout.capsules[:]
    self.layout = layout
    self.score = 0
    self.scoreChange = 0

    self.agentStates = []
    numGhosts = 0
    for isPacman, pos in layout.agentPositions:
      if not isPacman:
        if numGhosts == numGhostAgents: continue # Max ghosts reached already
        else: numGhosts += 1
      self.agentStates.append( AgentState( Configuration( pos, Directions.STOP), isPacman) )
    self._eaten = [False for a in self.agentStates]

try:
  import boinc
  _BOINC_ENABLED = True
except:
  _BOINC_ENABLED = False
  
class Game:
  """
  The Game manages the control flow, soliciting actions from agents.
  """

  def __init__( self, agents, display, rules, startingIndex=0, muteAgents=False, catchExceptions=False ):
    self.agentCrashed = False
    self.agents = agents
    self.display = display
    self.rules = rules
    self.startingIndex = startingIndex
    self.gameOver = False
    self.muteAgents = muteAgents
    self.catchExceptions = catchExceptions
    self.moveHistory = []
    self.totalAgentTimes = [0 for agent in agents]
    self.totalAgentTimeWarnings = [0 for agent in agents]
    self.agentTimeout = False
    import cStringIO
    self.agentOutput = [cStringIO.StringIO() for agent in agents]

  def getProgress(self):
    if self.gameOver:
      return 1.0
    else:
      return self.rules.getProgress(self)

  def _agentCrash( self, agentIndex, quiet=False):
    "Helper method for handling agent crashes"
    if not quiet: traceback.print_exc()
    self.gameOver = True
    self.agentCrashed = True
    self.rules.agentCrash(self, agentIndex)

  OLD_STDOUT = None
  OLD_STDERR = None

  def mute(self, agentIndex):
    if not self.muteAgents: return
    global OLD_STDOUT, OLD_STDERR
    import cStringIO
    OLD_STDOUT = sys.stdout
    OLD_STDERR = sys.stderr
    sys.stdout = self.agentOutput[agentIndex]
    sys.stderr = self.agentOutput[agentIndex]

  def unmute(self):
    if not self.muteAgents: return
    global OLD_STDOUT, OLD_STDERR
    # Revert stdout/stderr to originals
    sys.stdout = OLD_STDOUT
    sys.stderr = OLD_STDERR


  def run( self ):
    """
    Main control loop for game play.
    """
    self.display.initialize(self.state.data)
    self.numMoves = 0

    ###self.display.initialize(self.state.makeObservation(1).data)
    # inform learning agents of the game start
    for i in range(len(self.agents)):
      agent = self.agents[i]
      if not agent:
        self.mute(i)
        # this is a null agent, meaning it failed to load
        # the other team wins
        print "Agent %d failed to load" % i
        self.unmute()
        self._agentCrash(i, quiet=True)
        return
      if ("registerInitialState" in dir(agent)):
        self.mute(i)
        if self.catchExceptions:
          try:
            timed_func = TimeoutFunction(agent.registerInitialState, int(self.rules.getMaxStartupTime(i)))
            try:
              start_time = time.time()
              timed_func(self.state.deepCopy())
              time_taken = time.time() - start_time
              self.totalAgentTimes[i] += time_taken
            except TimeoutFunctionException:
              print "Agent %d ran out of time on startup!" % i
              self.unmute()
              self.agentTimeout = True
              self._agentCrash(i, quiet=True)
              return
          except Exception,data:
            self._agentCrash(i, quiet=False)
            self.unmute()
            return
        else:
          agent.registerInitialState(self.state.deepCopy())
        ## TODO: could this exceed the total time
        self.unmute()

    agentIndex = self.startingIndex
    numAgents = len( self.agents )

    while not self.gameOver:
      # Fetch the next agent
      agent = self.agents[agentIndex]
      move_time = 0
      skip_action = False
      # Generate an observation of the state
      if 'observationFunction' in dir( agent ):
        self.mute(agentIndex)
        if self.catchExceptions:
          try:
            timed_func = TimeoutFunction(agent.observationFunction, int(self.rules.getMoveTimeout(agentIndex)))
            try:
              start_time = time.time()
              observation = timed_func(self.state.deepCopy())
            except TimeoutFunctionException:
              skip_action = True
            move_time += time.time() - start_time
            self.unmute()
          except Exception,data:
            self._agentCrash(agentIndex, quiet=False)
            self.unmute()
            return
        else:
          observation = agent.observationFunction(self.state.deepCopy())
        self.unmute()
      else:
        observation = self.state.deepCopy()

      # Solicit an action
      action = None
      self.mute(agentIndex)
      if self.catchExceptions:
        try:
          timed_func = TimeoutFunction(agent.getAction, int(self.rules.getMoveTimeout(agentIndex)) - int(move_time))
          try:
            start_time = time.time()
            if skip_action:
              raise TimeoutFunctionException()
            action = timed_func( observation )
          except TimeoutFunctionException:
            print "Agent %d timed out on a single move!" % agentIndex
            self.agentTimeout = True
            self._agentCrash(agentIndex, quiet=True)
            self.unmute()
            return

          move_time += time.time() - start_time

          if move_time > self.rules.getMoveWarningTime(agentIndex):
            self.totalAgentTimeWarnings[agentIndex] += 1
            print "Agent %d took too long to make a move! This is warning %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
            if self.totalAgentTimeWarnings[agentIndex] > self.rules.getMaxTimeWarnings(agentIndex):
              print "Agent %d exceeded the maximum number of warnings: %d" % (agentIndex, self.totalAgentTimeWarnings[agentIndex])
              self.agentTimeout = True
              self._agentCrash(agentIndex, quiet=True)
              self.unmute()

          self.totalAgentTimes[agentIndex] += move_time
          #print "Agent: %d, time: %f, total: %f" % (agentIndex, move_time, self.totalAgentTimes[agentIndex])
          if self.totalAgentTimes[agentIndex] > self.rules.getMaxTotalTime(agentIndex):
            print "Agent %d ran out of time! (time: %1.2f)" % (agentIndex, self.totalAgentTimes[agentIndex])
            self.agentTimeout = True
            self._agentCrash(agentIndex, quiet=True)
            self.unmute()
            return
          self.unmute()
        except Exception,data:
          self._agentCrash(agentIndex)
          self.unmute()
          return
      else:
        action = agent.getAction(observation)
      self.unmute()

      # Execute the action
      self.moveHistory.append( (agentIndex, action) )
      if self.catchExceptions:
        try:
          self.state = self.state.generateSuccessor( agentIndex, action )
        except Exception,data:
          self.mute(agentIndex)
          self._agentCrash(agentIndex)
          self.unmute()
          return
      else:
        self.state = self.state.generateSuccessor( agentIndex, action )

      # Change the display
      self.display.update( self.state.data )
      ###idx = agentIndex - agentIndex % 2 + 1
      ###self.display.update( self.state.makeObservation(idx).data )

      # Allow for game specific conditions (winning, losing, etc.)
      self.rules.process(self.state, self)
      # Track progress
      if agentIndex == numAgents + 1: self.numMoves += 1
      # Next agent
      agentIndex = ( agentIndex + 1 ) % numAgents

      if _BOINC_ENABLED:
        boinc.set_fraction_done(self.getProgress())

    # inform a learning agent of the game result
    for agent in self.agents:
      if "final" in dir( agent ) :
        try:
          self.mute(agent.index)
          agent.final( self.state )
          self.unmute()
        except Exception,data:
          if not self.catchExceptions: raise
          self._agentCrash(agent.index)
          self.unmute()
          return
    self.display.finish()