Planning Problems

 Want a sequence of actions to turn a start state into a goal state

 Unlike generic search, states and actions have internal structure, which allows better search methods

This slide deck courtesy of Dan Klein at UC Berkeley

Kinds of Plans

Forward Search

Applicable actions

Backward Search

$$g' = (g - ADD(a)) \cup Precond(a)$$

Heuristics: Ignore Preconditions

- Relax problem by ignoring preconditions
 - Can drop all or just some preconditions
 - Can solve in closed form or with set-cover methods

 $Action(Slide(t, s_1, s_2),$

PRECOND: $On(t, s_1) \wedge Tile(t) \wedge Blank(s_2) \wedge Adjacent(s_1, s_2)$

EFFECT: $On(t, s_2) \wedge Blank(s_1) \wedge \neg On(t, s_1) \wedge \neg Blank(s_2)$

Heuristics: No-Delete

- Relax problem by not deleting falsified literals
 - Can't undo progress, so solve with hill-climbing (non-admissible)

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)


```
ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b \neq x), (b \neq y), (x \neq y)
POSTCONDITIONS: On(b,y), Clear(x)
\neg On(b,x), \neg Clear(y)
```

Heuristics: Independent Goals

• Independent subgoals?

- Partition goal literals
- Find plans for each subset
- cost(all) < cost(any)?
- cost(all) < sum-cost(each)?

On(A, B)

Planning "Tree"

Start: HaveCake

Goal: AteCake, HaveCake

Action: Eat

> Pre: HaveCake Add: AteCake Del: HaveCake

Action: Bake

Pre: -HaveCake

Add: HaveCake

Reachable State Sets

Have=T, Ate=F

Have=F, Have=T, Ate=F

Have=T, Have=F, Have=T, Ate=F

Approximate Reachable Sets

Have=T, Ate=F

Have={T}, Ate={F}

Have=F, Ate=T Have=T, Ate=F $\begin{aligned} &\text{Have=}\{\text{T,F}\},\\ &\text{Ate=}\{\text{T,F}\} \end{aligned}$

(Have, Ate) not (T,T) (Have, Ate) not (F,F)

Have=T, Have=F, Have=T, Ate=T Ate=F

 $\begin{aligned} &\text{Have=}\{\text{T,F}\},\\ &\text{Ate=}\{\text{T,F}\} \end{aligned}$

(Have,Ate) not (F,F)

Planning Graphs

Start: HaveCake

Goal: AteCake, HaveCake

Action: Eat

Pre: HaveCake Add: AteCake Del: HaveCake

Action: Bake

Pre: —HaveCake Add: HaveCake

NEGATION

Literals and their negations can't be true at the same time

INCONSISTENT EFFECTS

An effect of one negates the effect of the other

INCONSISTENT SUPPORT

All pairs of actions that achieve two literals are mutex

Planning Graph

COMPETITION

Preconditions are mutex; cannot both hold

INTERFERENCE

One deletes a precondition of the other

Planning Graph

Propositions monotonically increase (always carried forward by no-ops)

Actions monotonically increase (if they applied before, they still do)

Proposition mutex relationships monotonically decrease

Action mutex relationships monotonically decrease

- Claim: planning graph "levels off"
 - After some time k all levels are identical
 - Because it's a finite space, the set of literals cannot increase indefinitely, nor can the mutexes decrease indefinitely
- Claim: if goal literal never appears, or goal literals never become non-mutex, no plan exists
 - If a plan existed, it would eventually achieve all goal literals (and remove goal mutexes – less obvious)
 - Converse not true: goal literals all appearing non-mutex does not imply a plan exists

Heuristics: Level Costs

- Planning graphs enable powerful heuristics
 - Level cost of a literal is the smallest S in which it appears
 - Max-level: goal cannot be realized before largest goal conjunct level cost (admissible)
 - Sum-level: if subgoals are independent, goal cannot be realized faster than the sum of goal conjunct level costs (not admissible)
 - Set-level: goal cannot be realized before all conjuncts are nonmutex (admissible)

Graphplan

- Graphplan directly extracts plans from a planning graph
- Graphplan searches for layered plans (often called parallel plans)
 - More general than totally-ordered plans, less general than partiallyordered plans
- A layered plan is a sequence of sets of actions
 - actions in the same set must be compatible
 - all sequential orderings of compatible actions gives same result

Layered Plan: (a two layer plan)

 $\begin{cases} move(A,B,TABLE) \\ move(C,D,TABLE) \end{cases} , \\ \begin{cases} move(B,TABLE,A) \\ move(D,TABLE,C) \\ \end{cases}$

Solution Extraction: Backward Search

Search problem:

Start state: goal set at last level Actions: conflict-free ways of achieving the current goal set Terminal test: at S₀ with goal set entailed by initial planning state

Note: may need to start much deeper than the leveling-off point!

Caching, good ordering is important

Scheduling

- In real planning problems, actions take time, resources
 - Actions have a duration (time to completion, e.g. building)
 - Actions can consume (or produce) resources (or both)
 - Resources generally limited (e.g. minerals, SCVs)
- Simple case: known (partial) plan, just need to schedule
- Even simpler: no resources, just ordering and duration

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1)
WheelStations (1)
Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspect1: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

Resource-Free Scheduling

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1) WheelStations (1) Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspect1: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

- How to minimize total time?
- Easy: schedule an action as soon as its parents are completed

$$ES(START) = 0$$

$$ES(a) = \max_{b:b \prec a} ES(b) + DUR(b)$$

Result:

Resource-Free Scheduling

JOBS

[AddEngine1 < AddWheels1 < Inspect1] [AddEngine2 < AddWheels2 < Inspect2]

RESOURCES

EngineHoists (1) WheelStations (1) Inspectors (2)

ACTIONS

AddEngine1: DUR=30, USE=EngHoist(1)
AddEngine2: DUR=60, USE=EngHoist(1)
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspect1: DUR=10, USE=Inspectors(1)
Inspect2 DUR=10, USE=Inspectors(1)

- Note there is always a critical path
- All other actions have slack
- Can compute slack by computing latest start times

$$LS(END) = ES(END)$$

$$LS(a) = \min_{b: a \prec b} LS(b) - DUR(a)$$

Result:

Adding Resources

- For now: consider only released (non-consumed) resources
- View start times as variables in a CSP
- Before: conjunctive linear constraints

$$\forall b: b \prec a \quad ES(a) \geq ES(b) + DUR(b)$$

Now: disjunctive constraints (competition)

if competing (a, b)

$$ES(a) \ge ES(b) + DUR(b) \lor$$

$$ES(b) \ge ES(a) + DUR(a)$$

In general, no efficient method for solving optimally

Adding Resources

- One greedy approach: min slack algorithm
 - Compute ES, LS windows for all actions
 - Consider actions which have all preconditions scheduled
 - Pick the one with least slack
 - Schedule it as early as possible
 - Update ES, LS windows (recurrences now must avoid reservations)

Resource Management

Complications:

- Some actions need to happen at certain times
- Consumption and production of resources
- Planning and scheduling generally interact