Planning Problems

= Want a sequence of actions to turn a start state into a
goal state

c ifa] = I

. e

= Unlike generic search, states and actions have internal

structure, which allows better search methods
This slide deck courtesy of Dan Klein at UC Berkeley

Kinds of Plans

Sequential Plan
MoveToTable(C,A) > Move(B,Table,C) > Move(A,Table,B)

Start State

On(C, A)

On(A, Table) |
On(B, Table) Partial-Order Plan

Clear(C) MoveToTable(C,A)
Clear(B) > MOVG(A,Table:B)]
Block(A) Move(B,Table,C)

Forward Search

Start State

On(C, A)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)

Applicable actions

OoACA)
On(A, Table)
On(B, Table)
Clear(C)
Clear(B)
Block(A)

+Clear(A)
+0On(C, Table)

Backward Search

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b% x), (b#y),
(x2y)
POSTCONDITIONS: On(b,y), Clear(x)
-0On(b,x), =Clear(y)

MoveToBIlock(A, Table,B) C
MoveToBlock(A,x’,B) - ——
Goal State
On(B, C) on(B, C)
On{AB) . On(A, B)
+On(A, Table) Relevant actions
+Clear(A)
+Clear(B)
+...

g = (g — ADD(a)) U Precond(a)

Heuristics: Ignore Preconditions

" Relax problem by ignoring preconditions
* Can drop all or just some preconditions
* Can solve in closed form or with set-cover methods

710 2 || 4]| 2

5 6 34 |f s

sl 3]| 1 o Il 7 1l 8
Start State Goal State

Action(Slide(t, sy, S2),
PRECOND: On(t.sy) A Tile(t) A Blank(so) A Adjacent(sy, s2)
EFFECT: On(t.s2) A Blank(s1) A —On(t.si) A = Blank(sz))

Heuristics: No-Delete

" Relax problem by not deleting falsified literals
* Can’t undo progress, so solve with hill-climbing (non-admissible)

On(C, A)
On(A, Table) c
Clear(C)
Clear(B)

ACTION: MoveToBlock(b,x,y)
PRECONDITIONS: On(b,x), Clear(b), Clear(y),
Block(b), Block(y), (b# x), (b£Yy), (x£Y)
POSTCONDITIONS: On(b,y), Clear(x)
=0On(b,x), =Clear(y)

Heuristics: Independent Goals

" Independent subgoals?
* Partition goal literals
* Find plans for each subset
C
* cost(all) < cost(any)?
* cost(all) < sum-cost(each)? Goal State
On(B, C)

/ On(A, B)

On(A, B) On(B, C)

Planning “Tree”

Start: HaveCake

Goal: AteCake, HaveCake

Action:

Action:

Eat

Pre: HaveCake
Add: AteCake
Del: HaveCake

Bake
Pre: -HaveCake
Add: HaveCake

{EW

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=F

{Bake/\ 0

(Eat /\ 0

Have=T,

Ate=T

Have=F,
Ate=T

Have=F,
Ate=T

Have=T,
Ate=F

Reachable State Sets

Have=T,
Ate=F

{Eat}

Have=F,
Ate=T

{Bake}

{Eat}

Have=T,
Ate=T

Have=F,
Ate=T

Have=T,
Ate=F

Have=F,
Ate=T

Have=T,
Ate=F

Have=T,
Ate=F
Have=F, || Have=T,
Ate=T Ate=F
Have=T, | Have=F, | Have=T,
Ate=T Ate=T Ate=F

Approximate Reachable Sets

Have={T},
Ate={F}

Have={T,F},

Ate={T,F}

Have=T,
Ate=F
Have=F, | Have=T,
Ate=T Ate=F
Have=T, | Have=F, | Have=T,
Ate=T Ate=T Ate=F

Have={T,F},

Ate={T,F}

(Have, Ate) not (T,T)
(Have, Ate) not (F,F)

(Have,Ate) not (F,F)

Planning Graphs

Start: HaveCake

Goal: AteCake, HaveCake

Action: Eat
Pre: HaveCake
Add: AteCake
Del: HaveCake

Action: Bake
Pre: -HaveCake
Add: HaveCake

HaveCake

- AteCake

So

Eat

HaveCake

- HaveCake

AteCake

- AteCake

S

Mutual Exclusion (Mutex)

NEGATION

Literals and HaveCake HaveCake
their negations I

can’t be true at Eat - HaveCake
the same time

AteCake

[
IT - AteCake - AteCake

S, A, S,

Mutual Exclusion (Mutex)

INCONSISTENT
EFFECTS

An effect of one
negates the
effect of the other

/

©Q OO0 000

\

HaveCake

- AteCake

So

Eat

HaveCake
[

- HaveCake

AteCake
[

- AteCake

S

Mutual Exclusion (Mutex)

INCONSISTENT
SUPPORT
All pairs of actions

that achieve two HaveCake HaveICake
literals are mutex = STy
O\ O
O AteCake
[
© © - AteCake - AteCake
O O
_O SO AO 81

\

Planning Graph

Bake
HaveCake | _ HaveCake HaveCake
[
Eat (/ - HaveCake Eat - HaveCake
AteCake AteCake
[
- AteCake - AteCake - AteCake

S, A, S, A, S,

Mutual Exclusion (Mutex)

COMPETITION
Preconditions are

mutex; cannot
both hold

OOOOO/O
S
OOOO/CLO

\

Bake
HaveCake g HaveCake
[
- HaveCake Eat (- HaveCake
C
AteCake AteCake
| (
- AteCake - AteCake
S, A, S,
INCONSISTENT EFFECTS

An effect of one negates the
effect of the other

Mutual Exclusion (Mutex)

INTERFERENCE
One deletes a
precondition of

the other
Q O
O\ io
O O
O O
O —-0
o—

HaveCake
[

- HaveCake

AteCake
[

- AteCake

s,

Sell
Bake
HaveCake
Eat - HaveCake
AteCake
- AteCake
A, S,

Planning Graph

Bake
HaveCake | _ HaveCake g HaveCake \\
[[\
Eat V - HaveCake Eat (- HaveCake :
C
/
Q AteCake AteCake 7
[([
- AteCake - AteCake - AteCake

S, A, S, A, S,

=r

/

Observation 1

P P
9 q
—|q>< —|q
B B
o = T r /
-r

Propositions monotonically increase
(always carried forward by no-ops)

=r

Observation 2

/

\
— 9 q
—q —q
/

/
N\

Actions monotonically increase
(if they applied before, they still do)

Observation 3

OO

{

Proposition mutex relationships monotonically decrease

OO

Observation 4

N

N

e

Action mutex relationships monotonically decrease

Observation 5

= Claim: planning graph “levels off”
= After some time k all levels are identical

= Because it’s a finite space, the set of literals cannot increase
indefinitely, nor can the mutexes decrease indefinitely

= Claim: if goal literal never appears, or goal literals never
become non-mutex, no plan exists

* |f a plan existed, it would eventually achieve all goal literals (and
remove goal mutexes — less obvious)

= Converse not true: goal literals all appearing non-mutex does not
imply a plan exists

Heuristics: Level Costs

* Planning graphs enable powerful heuristics
= Level cost of a literal is the smallest S in which it appears

= Max-level: goal cannot be realized before largest goal conjunct
level cost (admissible)

= Sum-level: if subgoals are independent, goal cannot be realized
faster than the sum of goal conjunct level costs (not admissible)

= Set-level: goal cannot be realized before all conjuncts are non-
mutex (admissible)

Bake
HaveCake I / HaveCake (E (HaveCake
1 1

Eat {_- HaveCake Eat

(- HaveCake

\, AteCake AteCake
1 (1

- AteCake - AteCake

- AteCake

SO AO S1 A1 SZ

Graphplan

= Graphplan directly extracts plans from a planning graph

= Graphplan searches for layered plans (often called parallel plans)

= More general than totally-ordered plans, less general than partially-
ordered plans

= A layered plan is a sequence of sets of actions

= actions in the same set must be compatible
= all sequential orderings of compatible actions gives same result

BB -5

Layered Plan: (a two layer plan)

move(A,B,TABLE)) . [move(B,TABLE,A)
move(C,D,TABLE)[* | move(D,TABLE,C)

Solution Extraction: Backward Search

o o] o
Search problem: \gél“:’,
Start state: goal set at last level . <
Actions: conflict-free ways of o ° °
achieving the current goal set ~g—o-o
Terminal test: at S, with goal set
entailed by initial planning state \
o] o O o
Note: may need to start much ;élg \gﬁzo
deeper than the leveling-off point! o ? ° ?
]]
Caching, good ordering is ° T ° < o

important

Scheduling

In real planning problems,
actions take time, resources
* Actions have a duration (time
to completion, e.g. building)

* Actions can consume (or
produce) resources (or both)

* Resources generally limited
(e.g. minerals, SCVs)

Simple case: known (partial)
plan, just need to schedule

Even simpler: no resources,
just ordering and duration

JOBS
[AddEngine1 < AddWheels1 < Inspecii]
[AddEngine2 < AddWheels2 < Inspeci?2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEngine1: DUR=30, USE=EngHoist(
AddEngine2: DUR=60, USE=EngHoist(
AddWheels1: DUR=30, USE=WStation(
AddWheels2: DUR=15, USE=WStation(
Inspect1: DUR=10, USE=Inspectors(1)
Inspect2: DUR=10, USE=Inspectors(1)

1)
1)
1)
1)

Resource-Free Scheduling

= How to minimize total time?

JOBS
[AddEngine1 < AddWheels1 < Inspect1] " Easy: schedule an action as soon
[AddEngine2 < AddWheels2 < Inspect?2] as its parents are completed
RESOURCES
EngineHoists (1) ES(START) =0
WheelStations (1)
Inspectors (2) ES(a) = max ES(b) + DUR(D)
: a
ACTIONS

AddEngine1: DUR=30, USE=EngHoist(

1)
AddEngine2: DUR=60, USE=EngHoist(1) " Result:
AddWheels1: DUR=30, USE=WStation(1)
AddWheels2: DUR=15, USE=WStation(1)
Inspect1: DUR=10, USE=Inspectors(1) Engine1 Wheel Insp1
Inspect2: DUR=10, USE=Inspectors(1) 30 " 30 " 10
Start End
Engine2 Wheel2 ,| Insp2
60 1 15 10

Resource-Free Scheduling

JOBS
[AddEngine1 < AddWheels1 < Inspecti]
[AddEngine2 < AddWheels2 < Inspect?2]

RESOURCES
EngineHoists (1)
WheelStations (1)

Inspectors (2)

ACTIONS
AddEngine1: DUR=30, USE=EngHoist(
AddEngine2: DUR=60, USE=EngHoist(
AddWheels1: DUR=30, USE=WStation(
AddWheels2: DUR=15, USE=WStation(
Inspect1: DUR=10, USE=Inspectors(1)
Inspect2 DUR=10, USE=Inspectors(1)

)
)
)
)

—_ ol =k

Note there is always a critical path

All other actions have slack

Can compute slack by computing

latest start times
LS(END) = ES(END)
LS(a) = min LS(b) — DUR(a)

b:a<b
Result:

0 30 60

Engine1 .| Wheell ,| Insp1
30 30 10

Start

Engine2 | || Wheel2 ,| Insp2

60 15 10

0 60 75

85
End

Adding Resources

For now: consider only released (non-consumed) resources
View start times as variables in a CSP
Before: conjunctive linear constraints

Vb:b<a FES(a)> ES(b)+ DUR(b)
Now: disjunctive constraints (competition)
if competing(a, b)
ES(a) > ES(b) + DUR(b) V
ES(b) > ES(a) + DUR(a)

In general, no efficient method for solving optimally

AddEngine1 N AddEngine2

EngineHoists(1)

AddWheels2

WheelStations(1)

Inspectors(2)

Adding Resources

" One greedy approach: min slack algorithm
 Compute ES, LS windows for all actions
* Consider actions which have all preconditions scheduled
* Pick the one with least slack
* Schedule it as early as possible

* Update ES, LS windows (recurrences now must avoid
reservations)

[0,15] [30.45] [60,75]
AddEngine1 *1 AddWheels1 *1 Inspecti
30 30 10
[0,0] [85.85]
Start Finish
[0,0] [60,60] [75,75]
AddEngine2 [meis{ Add\Wheels? (| |nspect?
60 15 10

Resource Management

" Complications:
* Some actions need to happen at certain times
* Consumption and production of resources
* Planning and scheduling generally interact

	Planning Problems
	Kinds of Plans
	Forward Search
	Backward Search
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Planning Graphs
	Mutual Exclusion (Mutex)
	Slide 15
	Slide 16
	Planning Graph
	Slide 18
	Slide 19
	Slide 20
	Observation 1
	Observation 2
	Observation 3
	Observation 4
	Observation 5
	Heuristics: Level Costs
	Slide 27
	Solution Extraction: Backward Search
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

