# CS344M <br> Autonomous Multiagent Systems 

Prof: Peter Stone

Department of Computer Science The University of Texas at Austin

## Good Afternoon, Colleagues

Are there any questions?

## Good Afternoon, Colleagues

## Are there any questions?

- Can you handle mutual exclusivity of actions?
- What's the theory of Nash Eq.?
- Probabilistic strategies


## Logistics

- Progress reports due in 2 weeks


## Logistics

- Progress reports due in 2 weeks
- Change on main class website


## Logistics

- Progress reports due in 2 weeks
- Change on main class website
- FAI talk on Friday - Andrew McCallum - NLP


## Game Theory Premises

- Simultaneous actions: (mutual exclusivity?)


## Game Theory Premises

- Simultaneous actions: (mutual exclusivity?)
- No communication
- Outcome depends on combination of actions
- Utility (payoff) encapsulates everything about preferences over outcomes


## Solution Concepts

- Dominant strategy
- Nash equilibrium
- Pareto optimality
- Maximum social welfare
- Maximin strategy


## Prisoner's Dilemma

\[

\]

Row

## Chicken

|  | Column |  |
| :---: | :---: | :---: |
|  |  | C(1) |
| Row | C(1) | 3,3 |
|  | D(2) | 5,1 |

## Bach/Stravinsky

- My wife and I agree to meet at a concert


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- If not, so distraught we don't care what we're listening to


## Bach/Stravinsky

- My wife and I agree to meet at a concert
- Unfortunately, there are 2: Bach and Stravinsky
- No time to get in touch with each other
- I prefer Stravinsky, she prefers Bach
- But most of all, we want to be together
- If not, so distraught we don't care what we're listening to
- Propose a payoff matrix


## Bach/Stravinsky

Wife

|  | $S$ | $B$ |
| :---: | :---: | :---: |
| $S$ | 2,1 | 0,0 |

Me
B
0,0
1,2

## Nash Equilibrium

- Does every game have a pure strategy Nash equilibrium?


## Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win


## Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win

$$
\text { Player } 2
$$

$$
\begin{array}{lll}
H & 1,-1 & -1,1
\end{array}
$$

## Player 1

$$
\begin{array}{ll}
\mathrm{T} & -1,1
\end{array}
$$

$$
1,-1
$$

## Matching Pennies

- We each put a penny down covered
- If they match, I win, if they don't, you win

$$
\text { Player } 2
$$

|  |  | H | T |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Player 1 | H | $1,-1$ | $-1,1$ |
|  | T | $-1,1$ | $1,-1$ |

Nash equilibrium?

## Nash Equilibrium

- Every game has at least one Nash equilibrium


## Nash Equilibrium

- Every game has at least one Nash equilibrium
- Nobel prize and academy award!


## Nash Equilibrium

- Every game has at least one Nash equilibrium
- Nobel prize and academy award!
- Not known if complexity of finding one is NP-complete or in $P$


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium
- Are all Nash equilibria the result of playing dominant strategies?


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium
- Are all Nash equilibria the result of playing dominant strategies?
- Is the outcome of a Nash equilibrium necessarily Pareto optimal?


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium
- Are all Nash equilibria the result of playing dominant strategies?
- Is the outcome of a Nash equilibrium necessarily Pareto optimal?
- Is a Pareto optimal outcome necessarily the result of Nash equilibrium strategies?


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium
- Are all Nash equilibria the result of playing dominant strategies?
- Is the outcome of a Nash equilibrium necessarily Pareto optimal?
- Is a Pareto optimal outcome necessarily the result of Nash equilibrium strategies?
- Is the maximum social welfare outcome necessarily Pareto optimal?


## Some theory

- Prove that if each player plays a dominant strategy, the result is a Nash equilibrium
- Are all Nash equilibria the result of playing dominant strategies?
- Is the outcome of a Nash equilibrium necessarily Pareto optimal?
- Is a Pareto optimal outcome necessarily the result of Nash equilibrium strategies?
- Is the maximum social welfare outcome necessarily Pareto optimal?
- If both players play maximin, is it necessarily a Nash equilibrium?


## Mixed strategy equilibrium

# Player 2 <br> Action 1 Action 2 

Action 1
4,8
2,0

Player 1
Action 2
6,2
0,8

## Mixed strategy equilibrium

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?


## Mixed strategy equilibrium

$$
\begin{array}{cc}
\hline \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2 \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?


## Mixed strategy equilibrium

\[

\]

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action $11 / 4$ of the time?
- Player 1 must be indifferent between actions 1 and 2


## Mixed strategy equilibrium

$$
\begin{array}{cc} 
& \text { Player } 2 \\
\text { Action 1 } & \text { Action 2 } \\
4,8 & 2,0 \\
6,2 & 0,8
\end{array}
$$

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Player } 1
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action $11 / 4$ of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2


## Mixed strategy equilibrium

$$
\text { Player } 1
$$

\[

\]

$$
\text { Action } 1 \quad 4,8 \quad 2,0
$$

$$
\text { Action } 2
$$

- What if player 2 picks action $13 / 4$ of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Do actual numbers matter?

## Rock/Paper/Scissors

- Nash equilibrium?


## Rock/Paper/Scissors

- Nash equilibrium?
-Why is anything else not an equilibrium?


## Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky
Wife

S B
S
2,1
0,0

Me
B
0,0
1,2

## Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky
Wife

S
2,1
0,0

Me
B
0,0
1,2

Want only S,S or B,B-50\% each

