CS378

Autonomous Multiagent Systems Spring 2004

Prof: Peter Stone
TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin
Week 13a: Tuesday, April 20th

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- What if agents and humans act together?
- Is it irrational to be a participant in a common value auction?
- Are representative voting systems better?
- What's the best voting system?

Logistics

- Final tournament: Thursday, May 13th, 10:30am, ACES 6.304

Logistics

- Final tournament: Thursday, May 13th, 10:30am, ACES 6.304
- Next week's readings

Arrow's Theorem

Universality.

Arrow's Theorem

Universality. Complete rankings

Arrow's Theorem

Universality. Complete rankings

Pareto optimality.

Arrow's Theorem

Universality. Complete rankings

Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree

Arrow's Theorem

Universality. Complete rankings

Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree

Citizen Sovereignty.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives.

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives. Removing or adding
a non-winner doesn't change winner

Arrow's Theorem

Universality. Complete rankings
Pareto optimality. $\mathrm{X}>\mathrm{Y}$ if all agree
Citizen Sovereignty. Any ranking possible
Non-dictatorship. No one voter decides
Independence of irrelevant alternatives. Removing or adding
a non-winner doesn't change winner

Not all possible!

Condorcet Voting

- Strategy-proof under weaker irrelevant alternatives criterion

Condorcet Voting

- Strategy-proof under weaker irrelevant alternatives criterion
- A pairwise method

Condorcet Voting

- Strategy-proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set

Condorcet Voting

- Strategy-proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. B:

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Overall: $\mathrm{B}>\mathrm{C}>\mathrm{A}$

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Overall: $\mathrm{B}>\mathrm{C}>\mathrm{A}$

- Does that solve everything?

Condorcet Example

- 48: $A>B>C$
- 40: $\mathrm{B}>\mathrm{C}>\mathrm{A}$
- 12: $C>B>A$
- A vs. $B: 48-52 \Longrightarrow B>A$
- A vs. C : 48-52 $\Longrightarrow C>A$
- B vs. C : $88-12 \Longrightarrow B>C$

Overall: $\mathrm{B}>\mathrm{C}>\mathrm{A}$

- Does that solve everything? What about cycles?

Class Discussion

Arpan Sura on voting systems

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers
maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
- Utilities or production sets don'† depend on others'

General Equilibrium

Consumers: utilities, endowments
Producers: production possibility sets
Variables: prices on goods
Equilibrium: allocation (prices) such that consumers maximize preferences, producers maximize profits

- Assumption: agent doesn'† affect prices
- Only true if market is infinitely large
- Else, strategic bidding (like bargaining) possible
- Assumption: no externalities
- Utilities or production sets don'† depend on others'
- Braess' paradox

Bargaining

small market, both can come out favorably

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome
- Example: "split the dollar"

Bargaining

small market, both can come out favorably

- Two people bargaining, each with a preference over outcomes O
- Let o^{*} be the selected outcome
- Example: "split the dollar"
- One person makes offer o
- Other rejects with probaility $p(o)$ - based on offer
- If rejects, both get nothing

Other DRDM

- Contract nets: task allocation among agents

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)
- Coalitions

Other DRDM

- Contract nets: task allocation among agents
- Contingencies
- Leveled commitment (price)
- Coalitions
- Formation
- Optimization within
- Payoff division

DRDM Summary

For many agents: voting, general equilibrium, auctions
For fewer agents: auctions, contract nets, bargaining
Possible in all: coalitions

DRDM Summary

For many agents: voting, general equilibrium, auctions
For fewer agents: auctions, contract nets, bargaining
Possible in all: coalitions

All self-interested, rational agents

Spectrum licenses

- Worth a lot
- But how much to whom?

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries
- too random
- clear that lots of value given away

Spectrum licenses

- Worth a lot
- But how much to whom?
- Used to be assigned
- took too long
- Switched to lotteries
- too random
- clear that lots of value given away

So decided to auction

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Goals of mechanism

- Efficient allocation (assign to whom it's worth the most)
- Promote deployment of new technologies
- Prevent monopoly (or close)
- Get some licenses to designated companies
- No political embarrassments

Revenue an afterthought (but important in end)

Choices

- Which basic auction format?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?

Choices

- Which basic auction format?
- Sequential or simultaneous auctions?
- Combinatorial bids allowed?
- How to encourage designated companies?
- Up front payments or royalties?
- Reserve prices?
- How much information public?

