CS378

Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone
TA: Mazda Ahmadi

Department of Computer Sciences
The University of Texas at Austin
Week 10a: Thursday, March 31st

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- What if you don't know outcomes ahead of time?
- Can strategies in the iterated case be automated?

Logistics

- Project progress reports due next week

T-test vs. Paired T-test

- Test: Your team better than UvA vs. CMUnited

T-test vs. Paired T-test

- Test: Your team better than UvA vs. CMUnited
- Test: Your team better than UvA vs. a set of 20 opponents

T-test vs. Paired T-test

- Test: Your team better than UvA vs. CMUnited
- Test: Your team better than UvA vs. a set of 20 opponents
- What if neither is significant?

Student-led discussion

- Zac on real-world uses of game theory

Mixed strategy equilibrium

Player 2
 Action 1 Action 2

	Action 1	2,2	2,0
Player 1	Action 2	3,1	0,2

Mixed strategy equilibrium

Player 2
 Action 1 Action 2

$$
\begin{array}{llll}
& \text { Action 1 } & 2,2 & 2,0 \\
\text { Player 1 } & & \\
& \text { Action 2 } & 3,1 & 0,2
\end{array}
$$

- Pure strategy Nash equilibrium?

Mixed strategy equilibrium

$$
\begin{array}{lll}
\hline & \text { Player } & 2 \\
\text { Action } 1 & \text { Action } 2
\end{array}
$$

Action $1 \quad 2,2 \quad 2,0$

Player 1
Action 2
3,1
0,2

- Pure strategy Nash equilibrium?
- Mixed strategy Nash equilibrium?

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

> Wife

S
2,1
0,0
Me
B
0,0
1,2

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky
Wife
S B
$S \quad 2,1 \quad 0,0$

Me
B
0,0
1,2

Want only S,S or B,B-50\% each

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

Focal points

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15 th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Card ?

$$
\begin{array}{ccc}
& \mathrm{R} & \mathrm{~F} \\
\mathrm{R} & 5,-5 & 1,-1
\end{array}
$$

Card 3

$$
\begin{array}{ll}
F & -1,1
\end{array}
$$

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3

$$
\text { F } \quad-1,1
$$

$$
0,0
$$

Incomplete Information Games

	Card ?	
	R	
R	$5,-5$	$1,-1$

Card 3

F $\quad-1,1 \quad l$| | |
| :--- | :--- |
| | |
| | Card ? |

R F

R $\quad-5,5$
$1,-1$
Card 1
F
$-1,1$
0,0

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

