CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone TA: Mazda Ahmadi

Department of Computer Sciences The University of Texas at Austin

Week 12a: Tuesday, April 12th

Good Afternoon, Colleagues

Are there any questions?

- Final tournament time
 - Friday, 5/13 at 2pm

Self-interested, rational agent

• Self-interested:

- Self-interested: maximize own goals
 - No concern for global good

- Self-interested: maximize own goals
 - No concern for global good
- Rational:

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

Self-interested, rational agent

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

The protocol is key

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality
- Efficiency (computational, communication)

- Auctions: maximize profit
 - result affects buyer and seller
- Voting: maximize social good
 - result affects all

Ani Popova on taking a class vacation

• Example: Bush, Gore, or Nader?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

What about Clarke tax algorithm?

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated
 e.g. in Borda protocol

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated
 e.g. in Borda protocol
- Push-over: Rank someone higher to get someone else elected
 - e.g. in a protocol with multiple rounds

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Criterion of independence of irrelevant alternatives. If one set of preference ballots would lead to an an overall ranking of alternative X above alternative Y and if some preference ballots are changed without changing the relative rank of X and Y, then the method should still rank X above Y.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Non-dictatorship. There should not be one specific voter whose preference ballot is always adopted.

Universality.

Universality. Complete rankings

Universality. Complete rankings

Pareto optimality.

Universality. Complete rankings

Pareto optimality. X > Y if all agree

Pareto optimality. X > Y if all agree

Citizen Sovereignty.

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship.

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives.

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner

Not all possible!

 Strategy proof under weaker irrelevant alternatives criterion

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

• Does that solve everything?

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

• Does that solve everything? What about cycles?

