CS378 Autonomous Multiagent Systems Spring 2005

Prof: Peter Stone TA: Nate Kohl

Department of Computer Sciences The University of Texas at Austin

Week 13a: Tuesday, April 18th

Good Afternoon, Colleagues

Are there any questions?

• Final tournament: Tuesday, May 16th, 1pm

- Final tournament: Tuesday, May 16th, 1pm
- All readings up

- Final tournament: Tuesday, May 16th, 1pm
- All readings up
- Final projects due in 2 weeks!

Recursive Modeling Method

• What should I do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?
- What should I think you'll do given what I think you think I'll do?

Recursive Modeling Method

- What should I do?
- What should I do given what I think you'll do?
- What should I think you'll do given what I think you think I'll do?
- etc.

• Rely on communication

- Rely on communication
 - What to say? What to trust?

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes
- Use deeper models
 - Includes physical and mental states

- Rely on communication
 - What to say? What to trust?
- Watch for patterns of others
 - Might have incorrect expectations, especially if environment changes
- Use deeper models
 - Includes physical *and* mental states
 - Could be computationally expensive

Example: pursuit task

No-information: Random choice

Example: pursuit task

No-information: Random choice

Sub-intentional: Not rational

Example: pursuit task

No-information: Random choice

Sub-intentional: Not rational

Intentional: Others use same model

Lessons

- Modeling can help
- There is a lot of useless information in recursive models
- Approximations (limited rationality) can be useful

• Use your own plans to model others

- Use your own plans to model others
- Use explicit team operators

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair
- Assume agent is using a plan that you could use,
 - But not modeling you

- Use your own plans to model others
- Use explicit team operators
 - Introduces challenges of role assignments, and
 - Minimum cost repair
- Assume agent is using a plan that you could use,
 - But not modeling you
- Act based on assumed actions of others

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can't build a full model in advance?

Where do Models Come From

Observation:

- Tambe and RMM: use existing model
 - No building a model

What if we can't build a full model in advance?

• What are some incremental approaches for building a predictive model?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

• What is your strategy before modeling me?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?

- Rock beats scissors
- Scissors beats paper
- Paper beats rock

- What is your strategy before modeling me?
- What is your strategy after modeling me?
- Am I modeling you?
- Would your end strategy change if I can?

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
TTAYOT T	Action 2	2,1		4,0

• Nash equilibrium?

			Player	2
		Action	1	Action 2
Dlavor	Action 1	1,0		3,2
riayei	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
1 + 00 y 01 - 1	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

			Player	2
		Action	1	Action 2
Plaver 1	Action 1	1,0		3,2
	Action 2	2,1		4,0

- Nash equilibrium?
- Action 2 is dominant for Player 1. End of story?
- What would you do as player 2?
- Threats can stabilize a non-equilibrium strategy
- Change the **best response** of the other agent

Threats slides

• How useful is the concept of Nash equilibrium?

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning

- How useful is the concept of Nash equilibrium?
- Shoham:
 - 0-sum = single agent problem
 - common payoff = search for pareto optimum
 - General sum is the interesting case:
 - Learning in an environment with other, unknown, independent agents who may also be learning
 - Need to do well against some set of agents, never too poorly, and well against yourself.

