
CS378
Autonomous Multiagent Systems

Spring 2005

Prof: Peter Stone
TA: Nate Kohl

Department of Computer Sciences
The University of Texas at Austin

Week 14b: Thursday, April 27th



Good Afternoon, Colleagues

Are there any questions?

− Competitive fitness sharing? (vs. opponent sampling?)
− How many games of TTT did it take to learn?
− Why do they compare vs. older methods?
− What’s Nim?
− Why 2 populations (vs. self play)
− What’s new with keepaway? Any coevolution?
− What learning updates when others have the ball?

Peter Stone



The Tournament
1. Untitled Plaisance, Romer
2. HIVE Menzies, Ma
3. Team Voodoo Schneider, Guimbarda
4. YoHoHo Bland, Gray
5. Dynamic Rathmann, Marocha
6. Team America Huie, Hasan
7. Goal Rushers Kret, Massey
8. Listos Huerta, Nelson
9. Marigo Nimmagadda, Ristroph

Peter Stone



The Tournament
1. Untitled Plaisance, Romer
2. HIVE Menzies, Ma
3. Team Voodoo Schneider, Guimbarda
4. YoHoHo Bland, Gray
5. Dynamic Rathmann, Marocha
6. Team America Huie, Hasan
7. Goal Rushers Kret, Massey
8. Listos Huerta, Nelson
9. Marigo Nimmagadda, Ristroph

10. FOOBAR BAZ Knox, Edwards, Doyle

Peter Stone



Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis

Peter Stone



Machine Learning
Hypothesis space: set of possible functions

Training examples: the data

Learning method: training examples 7→ hypothesis

Agent Learning
Policy: how to act (generate training examples)

neural network training, Q-learning, decision tree training,
clustering, genetic algorithms, genetic programming, . . .

Peter Stone



3 vs. 2 Keepaway (joint with Rich Sutton)
• Play in a small area (20m × 20m)

• Keepers try to keep the ball

• Takers try to get the ball

• Episode:
− Players and ball reset randomly
− Ball starts near a keeper
− Ends when taker gets the ball or ball goes out

• Performance measure: average possession duration

• Use CMUnited-99 skills:

− HoldBall, PassBall(k), GoToBall, GetOpen

Peter Stone



Available Skills (from CMUnited-99)

HoldBall(): Remain stationary while keeping possession of
the ball.

PassBall(k): Kick the ball directly to keeper k.

GoToBall(): Intercept a moving ball or move directly towards
a stationary ball.

GetOpen(): Move to a position that is free from opponents
and open for a pass from the ball’s current position (using
SPAR [Veloso et al., 1999])

BlockPass(k): Get in between the ball and keeper k

Peter Stone



The Keepers’ Policy Space

notBall

��
���

���
���

���

J
J

J
J

J
JJ���

���
���

��

J
J

J
J

JJ

GetOpen

GoToBall {HoldBall,PassBall(k)}
(k is another keeper)

Teammate with ball
or can get there
faster

kickable Ball
kickable

Peter Stone



The Keepers’ Policy Space

notBall

��
���

���
���

���

J
J

J
J

J
JJ���

���
���

��

J
J

J
J

JJ

GetOpen

GoToBall {HoldBall,PassBall(k)}
(k is another keeper)

Teammate with ball
or can get there
faster

kickable Ball
kickable

Example Policies
Random: HoldBall or PassBall(k) randomly
Hold: Always HoldBall
Hand-coded:

If no taker within 10m: HoldBall
Else If there’s a good pass: PassBall(k)
Else HoldBall

Peter Stone



Mapping Keepaway to RL
Discrete-time, episodic, distributed RL

• Simulator operates in discrete time steps, t = 0, 1, 2, . . .,
each representing 100 msec

• Episode: s0, a0, r1, s1, . . . , st, at, rt+1, st+1, . . . , rT , sT

• at ∈ {HoldBall, PassBall(k), GoToBall, GetOpen}

• rt = 1

• V π(s) = E{T | s0 = s}

• Goal: Find π∗ that maximizes V for all s

Peter Stone



Representation

-

-

-

Action
values

Huge binary feature vector
(about 400 1's and 40,000 0's)

Full
soccer
state

$� $�


$�

!
�

� %& �

�
&

�'
�

�'
�

Few
continuous

state variables
(13)

Sparse, coarse,
tile coding

Linear
map

Peter Stone



s: 13 Continuous State Variables

• 11 distances among players, ball, and center

• 2 angles to takers along passing lanes

Peter Stone



Function Approximation: Tile Coding

• Form of sparse, coarse coding based on CMACS [Albus,

1981]

Tiling #1

State Variable #1

Tiling #2

State Variable #1

S
ta

te
 V

ar
ia

bl
e 

#2

S
ta

te
 V

ar
ia

bl
e 

#2

• Tiled state variables individually (13)

Peter Stone



Policy Learning
• Learn Qπ(s, a): Expected possession time

Peter Stone



Policy Learning
• Learn Qπ(s, a): Expected possession time

• Linear Sarsa(λ) — each agent learns independently

− On-policy method: advantages over e.g. Q-learning
− Not known to converge, but works (e.g. [Sutton, 1996])

Peter Stone



Main Result

0 1 0 2 0 2 5
4

6

8

1 0

1 2

1 4

Episode
Duration
(seconds)

Hours of Training Time
(bins of 1000 episodes)

handcoded random
always
hold

1 hour = 720 5-second episodes

Peter Stone



Varied Field Size
Testing Field Size

Keepers 15x15 20x20 25x25
Trained 15x15 11.0 9.8 7.2
on field 20x20 10.7 15.0 12.2
of size 25x25 6.3 10.4 15.0

Hand 4.3 5.6 8.0
Benchmarks Hold 3.9 4.8 5.2

Random 4.2 5.5 6.4

• Single runs
• learning specific to fields
− mechanism generalizes better than policies

Peter Stone



4 vs. 3 Keeper Learning

0 1 0 2 0 3 0 4 0 5 0

6

7

8

9

1 0

Hours of Training Time
(bins of 1000 episodes)

Episode
Duration
(seconds) handcoded

random

always hold

• Preliminary: taker learning successful as well

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

• Evolutionary learning (Taylor and Whiteson)

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

• Evolutionary learning (Taylor and Whiteson)

• Half field offense (Kalyanakrishnan)

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

• Evolutionary learning (Taylor and Whiteson)

• Half field offense (Kalyanakrishnan)

− Communication updates when others have the ball

Peter Stone



What’s new in Keepaway?
• 5 vs. 4

• Transfer learning (Taylor, Liu)

• Evolutionary learning (Taylor and Whiteson)

• Half field offense (Kalyanakrishnan)

− Communication updates when others have the ball

• Any coevolution?

Peter Stone



Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat

Peter Stone



Genetic algorithms
• Keep a population of individuals

• Each generation

– Evaluate their fitness
– Throw out the bad ones
– Change the good ones randomly
– Repeat

The fitness function matters

• Playing against top-notch competition → no info

• Playing against a single foe → too brittle

Peter Stone



Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

Peter Stone



Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

• 2 techniques to keep diversity

Peter Stone



Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

• 2 techniques to keep diversity

– Fitness sharing: prevent extinctions
– Opponent sampling: use range of opponents to test

Peter Stone



Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

• 2 techniques to keep diversity

– Fitness sharing: prevent extinctions
– Opponent sampling: use range of opponents to test

• Test on TTT, Nim (and go)

– Millions of generations
– Worse than perfect play

Peter Stone



Rosin and Belew
• Co-evolve 2 populations: gives software and test suites

item “New genotypes arise to defeat old ones”

– Why not self play?

• 2 techniques to keep diversity

– Fitness sharing: prevent extinctions
– Opponent sampling: use range of opponents to test

• Test on TTT, Nim (and go)

– Millions of generations
– Worse than perfect play
– Why compare against old methods?

Peter Stone



Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously

Peter Stone



Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously

• Applied in pursuit domain among others

Peter Stone



Collaborative Co-Evolution
• Learn collaborative behaviors simultaneously

• Applied in pursuit domain among others

• Simultaneous learning by teammates could be thought of
in this way as well.

Peter Stone


