Artificial Intelligence

Driving Is Easy

🕱 Eating, phone calls, texting, sleeping

- 🖞 Drunk driving
- X Aggressive driving

Driving Is Hard!

Y Distance and velocity estimation

- Y Physical dexterity
- 🖞 Piloting vs. navigating
- Y Split-second reactions

The Question

To what extent and how can a multiagent intersection control mechanism take advantage of the capabilities of autonomous vehicles in order to make automobile travel safer and faster?

Desiderata

🟋 Autonomy

- Low communication complexity
- 🕱 Sensor model realism
- Y Protocol standardization
- Y Deadlock/starvation avoidance
- Incremental deployability
- 🕱 Safety
- 🟋 Efficiency

Delay: increased travel time due to intersection

Throughput: total vehicles/time/lane

Simulator

"" 'aim3" <u>http://code.google.com/p/aim3</u>

- ☆ ~20K lines of Java
- **V** Discrete time (0.02 s)
- X Non-holonomic vehicle motion
- Y Point-to-point/broadcast communication
- Yehicle spawned using Poisson process

Vehicle-to-Intersection

- Driver agents call ahead to reserve a region of space-time
- Intersection manager approves or denies based on an intersection control policy
- Yehicles may not enter the intersection without a reservation
- Driver agents trust the intersection manager in the intersection

I'm arriving at time *t*...

Yet of messages and rules

Y Digitally signed

X Agent implementations do not matter

XAssume communication failure

Y Current mechanisms subsumed

The FCFS Policy

"" "First come, first served"

- Y Primary policy
- **Grid of reservation tiles**
- Y Internal simulation of vehicles' trajectories

Reservation Tile

"Granularity"

FCFS Video

Vehicle-to-Vehicle

Driver agents broadcast a claimDefine relations over claims:

- Conflict
- Priority
- Dominance
- **Permissibility**

Claim

source id message id 13 ixn id 5 stopped at ixn false arrival lane departure lane arrival time 128479 departure time 128523

Claim

source_id
2
message_id
6
ixn_id
5
stopped_at_ixn
false
arrival_lane
1
departure_lane
2
arrival_time
128479
departure_time
128613

Claim

source_id
3
message_id
10
ixn_id
5
stopped_at_ixn
false
arrival_lane
1
departure_lane
2
arrival_time
128479
departure_time
128497

Claim

source id message id ixn id stopped at ixn false arrival lane departure lane arrival time 128479 departure time 128564

<u>Nonpermissible</u>

V2V Video

Human Usability The Benefits

Some people enjoy driving

🛛 Classic cars

Transition period

Y Concepts extend to cyclists, pedestrians

The FCFS-Signal Policy

- Y Autonomous vehicles use protocol
- 🙀 Human-driven vehicles use signals
- Y Policy contains a signal model
- Y Uses state of relevant signal at arrival time:
 - Green: accept
 - Yellow: reject
 - Red: FCFS

Y Set aside off-limits tiles during green phases

D

Π

Failure Mode Analysis

- **Enable collision detection**
- Y Trigger incidents, examine aftermath
- **Construct** crash log

Mitigating Catastrophe

X Assume intersection manager can detect

🕱 Reaction:

Refuse future reservations

- Emergency-Stop message
- Volivous vs. passive vs. active
- What if vehicles do not receive?

Average Number Of Crashed Vehicles

Average Number Of Crashed Vehicles

Multiple Intersections What's The Big Deal?

Protocol considerations

Y Downstream effects

- Y Driver agent navigation
- **W**Upstream effects

ACZ Distance

Admission Control Zone (ACZ)

Tuesday, November 10, 2009

Multi-intersection Video

Other Results

Y Effects of multiple intersections

- Emergency vehicles
- Y On-the-fly policy switching
- Y Learning policy selection

Related Work Intelligent Vehicles

- 🕱 Object detection and tracking
 - Stereo far-IR/fusion (Mählisch et al. 2005)
 - Gray-valued video (Gepperth et al. 2005)
- 🟋 Lane following
 - NN for Road Departure Warning (Kohl et al. 2006)
 - "No Hands Across America" (Pomerleau 1995)
 - Robust to lighting/road conditions (Watanabe and Nishida 2005)
 - Unmarked roads (Ramström and Christensen 2005)
- Adaptive cruise control (Jaguar, Honda, BMW, Nissan, Toyota)

Related Work Traffic Signals

TRANSYT (Robertson 1969)

- SCOOT (Hunt et al. 1981)
- X Cooperative traffic signals (Roozemond 1999)
- 🔀 Q-learning (Abdulhai et al. 2003)
- Learning Classifier Systems (Bull et al. 2004)
- X MAS + game theory (Bazzan 2005)
- History-based (Balan and Luke 2006)

Related Work

Autonomous Vehicles at Intersections

- "Potential collision points" (Rasche and Naumann 1998)
- Steering algorithms/collision avoidance (Reynolds 1999)
- Platoons (Clement 2002, Hallé and Chaib-draa 2005)
- Physical robots (Kolodko and Vlacic 2003)

Future Directions

Mixed Simulation

Future Directions Proteus Robots

Future Directions Exploring Asynchronicity

Future Directions Exploring Asynchronicity

