TEXPLORE: Real-Time Sample-Efficient Reinforcement Learning for Robots

Todd Hester and Peter Stone

Learning Agents Research Group Department of Computer Science The University of Texas at Austin

Journal Track: appeared in Machine Learning, 2013

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

イロト イポト イヨト イヨ

Robot Learning

- Robots have the potential to solve many problems
- We need methods for them to learn and adapt to new situations

Reinforcement Learning

- Value function RL has string of positive theoretical results [Watkins 1989, Brafman and Tennenholtz 2001]
- Could be used for learning and adaptation on robots

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Reinforcement Learning

Model-free Methods

- Learn a value function directly from interaction with environment
- Can run in real-time, but not very sample efficient

Model-based Methods

- Learn model of transition and reward dynamics
- Update value function using model (planning)
- Can update action-values without taking real actions in the world

イロト イポト イヨト イヨト

Velocity Control of an Autonomous Vehicle

- Upgraded to run **autonomously** by adding shift-by-wire, steering, and braking actuators.
- 10 second episodes (at 20 Hz: 200 samples / episode)

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Velocity Control

State:

- Current Velocity
- Desired Velocity
- Accelerator Pedal Position
- Brake Pedal Position
- Actions:
 - Do nothing
 - Increase/decrease brake position by 0.1
 - Increase/decrease accelerator position by 0.1

Desiderata

- Learning algorithm must learn in very few actions (be sample efficient)
- Learning algorithm must take actions continually in real-time (while learning)
- Learning algorithm must handle continuous state
- Learning algorithm must handle delayed actions

イロト イ押ト イヨト イヨト

Desiderata

- Learning algorithm must learn in very few actions (be sample efficient)
- Learning algorithm must take actions continually in real-time (while learning)
- Learning algorithm must handle continuous state
- Learning algorithm must handle delayed actions

Common Approaches

Algorithm	Citation	Sample	Real	Continuous	Delay
		Efficient	Time		
R-Max	Brafman 2001	Yes	No	No	No
Q-Learning	Watkins 1989	No	Yes	No	No
with F.A.	Sutton & Barto 1998	No	Yes	Yes	No
SARSA	Rummery & Niranjan 1994	No	Yes	No	No
GPRL	Deisenroth & Rasmussen 2011	Yes	No	Yes	No
BOSS	Asmuth et al 2009	Yes	No	No	No
Bayesian DP	Strens 2000	Yes	No	No	No
MBBE	Dearden et al 1999	Yes	No	No	No
MBS	Walsh et al 2009	Yes	No	No	Yes
Dyna	Sutton 1990	No	Yes	No	No

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

イロン イロン イヨン イヨン

ъ

Common Approaches

Algorithm	Citation	Sample	Real	Continuous	Delay
		Efficient	Time		
R-Max	Brafman 2001	Yes	No	No	No
Q-Learning	Watkins 1989	No	Yes	No	No
with F.A.	Sutton & Barto 1998	No	Yes	Yes	No
SARSA	Rummery & Niranjan 1994	No	Yes	No	No
GPRL	Deisenroth & Rasmussen 2011	Yes	No	Yes	No
BOSS	Asmuth et al 2009	Yes	No	No	No
Bayesian DP	Strens 2000	Yes	No	No	No
MBBE	Dearden et al 1999	Yes	No	No	No
MBS	Walsh et al 2009	Yes	No	No	Yes
Dyna	Sutton 1990	No	Yes	No	No

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

イロン イロン イヨン イヨン

ъ

The TEXPLORE Algorithm

- Limits exploration to be sample efficient
- Selects actions continually in real-time
- Handles continuous state
- Handles actuator delays

Available publicly as a **ROS package**:

www.ros.org/wiki/rl-texplore-ros-pkg

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

· < 프 ► < 프 ►

Challenge 1: Sample Efficiency

- Treat model learning as a supervised learning problem
 - Input: State and Action
 - Output: Distribution over next states and reward
- Factored model: Learn a separate model to predict each next state feature and reward
- **Decision Trees**: Split state space into regions with similar dynamics

< ∃ > <

Random Forest Model [ICDL 2010]

- Average predictions of *m* different decision trees
- Each tree represents a **hypothesis** of the true dynamics of the domain
- Acting greedily w.r.t. the average model balances predictions of optimistic and pessimistic models
- Limits the agent's exploration to state-actions that appear promising, while avoiding those which may have negative outcomes

Random Forest Model [ICDL 2010]

- Average predictions of *m* different decision trees
- Each tree represents a **hypothesis** of the true dynamics of the domain
- Acting greedily w.r.t. the average model balances predictions of optimistic and pessimistic models
- Limits the agent's exploration to state-actions that appear promising, while avoiding those which may have negative outcomes

· < 프 ► < 프 ►

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Challenge 2: Real-Time Action Selection

- Model update can take too long
- Planning can take too long

ヘロト ヘアト ヘビト ヘビト

э

Real-Time Model Based Architecture (RTMBA)

- Model learning and planning on parallel threads
- Action selection is not restricted by their computation time

ヘロト ヘアト ヘビト ヘビト

- Use sample-based planning (anytime)
- Mutex locks on shared data

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Challenge 3: Continuous State

- Use regression trees to model continuous state
- Each tree has a linear regression model at its leaves
- Discretize state space for value updates from UCT, but still plan over continuously valued states

Challenge 4: Actuator Delays

- Delays make domain non-Markov, but k-Markov
- Provide model with previous k actions (Similar to U-Tree [McCallum 1996])
- Trees can learn which delayed actions are relevant
- UCT can plan over augmented state-action histories easily
- Would not be as easy with tabular models or dynamic programming

イロト イ押ト イヨト イヨト

Autonomous Vehicle

- Upgraded to run autonomously by adding shift-by-wire, steering, and braking actuators.
- Vehicle runs at 20 Hz.
- Agent must provide commands at this frequency.

Uses ROS [Quigley et al 2009]

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Simulation Experiments

Exploration Approaches

- Epsilon-Greedy
- Boltzmann Exploration
- Use merged BOSS-like model
- Use random model each episode

Sample Efficient Methods

- BOSS [Asmuth et al 2009]
- Bayesian DP [Strens 2000]
- Gaussian Process RL [Deisenroth & Rasmussen 2011]

(日)

Simulation Experiments

Continuous Models

- Tabular Models
- Gaussian Process RL [Deisenroth & Rasmussen 2011]
- KWIK linear regression [Strehl & Littman 2007]

Real-Time Architectures

- Real Time Dynamic Programming [Barto et al 1995]
- Dyna [Sutton 1990]
- Parallel Value Iteration

Actuator Delays

Model Based Simulation [Walsh et al 2009]

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Challenge 1: Sample Efficiency

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Challenge 1: Sample Efficiency

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Challenge 2: Real-Time Action Selection

Challenge 3: Modeling Continuous Domains

э

Challenge 3: Modeling Continuous Domains

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

Challenge 4: Handling Delayed Actions

Hester and Stone – UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

On the physical vehicle

• But, does it work on the actual vehicle?

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

On the physical vehicle

• Yes! It learns the task within 2 minutes of driving time

Hester and Stone - UT Austin TEXPLORE: Real-Time Sample-Efficient RL for Robots

TEXPLORE can:

- Learn in few samples
 - Act continually in real-time
- Learn in continuous domains
- Handle actuator delays
- TEXPLORE code has been released as a ROS package: www.ros.org/wiki/rl-texplore-ros-pkg

