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Differentiable

Updates can be high variance
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Why are we allowed to subtract a baseline?

Expected baseline
contribution = 0 because…

…multiplied by term
with expectation 0

How does expected
return change w.r.t. prefs?

Claim: a good baseline reduces variance of gradient and improves convergence
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Theory:  upper bounds on convergence rate of SGD are 
directly related to the variance of gradient estimates

Intuition:  variance causes “overshooting” that destabilizes learning
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Why does baseline reduce variance?
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Original “gradients”

We are NOT subtracting
from the gradient

We are subtracting
from a number that 

multiplies the gradient


