REINFORCEMENT LEARNING: THEORY AND PRACTICE Ch. 2: Gradient Bandits

Profs. Scott Niekum and Peter Stone

Gradient Bandits: Arm Preferences

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}}$$

 $\frac{1}{a} \doteq \pi_t(a)$

Gradient Bandits: Arm Preferences

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}}$$



Gradient Bandits: Arm Preferences

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}}$$

$H_{t+1}(A_t) \doteq H_t(A_t) + \alpha (R_t - \alpha R_t) + \alpha$ $H_{t+1}(a) \doteq H_t(a) - \alpha (R_t - \alpha) - \alpha (R_t$

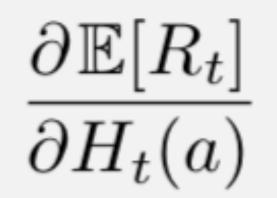
$\frac{1}{b} \doteq \pi_t(a)$ Differentiable

$$-\bar{R}_t \big) \big(1 - \pi_t(A_t) \big), \quad \text{and} \\ \bar{R}_t \big) \pi_t(a), \quad \text{for all } a \neq A_t$$

Updates can be high variance

Gradient Bandits: Baseline

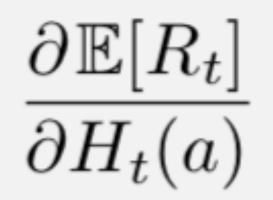
How does expected return change w.r.t. prefs?



$$= \frac{\partial}{\partial H_t(a)} \left[\sum_x \pi_t(x) q_*(x) \right]$$
$$= \sum_x q_*(x) \frac{\partial \pi_t(x)}{\partial H_t(a)}$$
$$= \sum_x \left(q_*(x) - B_t \right) \frac{\partial \pi_t(x)}{\partial H_t(a)},$$

Gradient Bandits: Baseline

How does expected return change w.r.t. prefs?



Sum over Actions

$$= \frac{\partial}{\partial H_t(a)} \left[\sum_x \pi_t(x) q_*(x) \right]$$

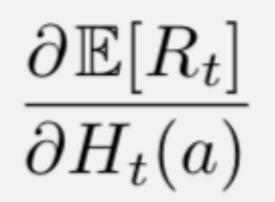
$$= \sum_x q_*(x) \frac{\partial \pi_t(x)}{\partial H_t(a)}$$

$$= \sum_x \left(q_*(x) - B_t \right) \frac{\partial \pi_t(x)}{\partial H_t(a)},$$

How good
is action?
How does polichange w.r.t. pr

Why are we allowed to subtract a baseline?

How does expected return change w.r.t. prefs?



cont

Claim: a good baseline reduces variance of gradient and improves convergence

$$= \frac{\partial}{\partial H_t(a)} \left[\sum_x \pi_t(x) q_*(x) \right]$$

$$= \sum_x q_*(x) \frac{\partial \pi_t(x)}{\partial H_t(a)}$$

$$= \sum_x \left(q_*(x) - B_t \right) \frac{\partial \pi_t(x)}{\partial H_t(a)},$$

Expected baselinemultiplied by further to the expectation of the

Why does the variance of the gradient matter?

Why does the variance of the gradient matter?

Theory: upper bounds on convergence rate of SGD are directly related to the variance of gradient estimates

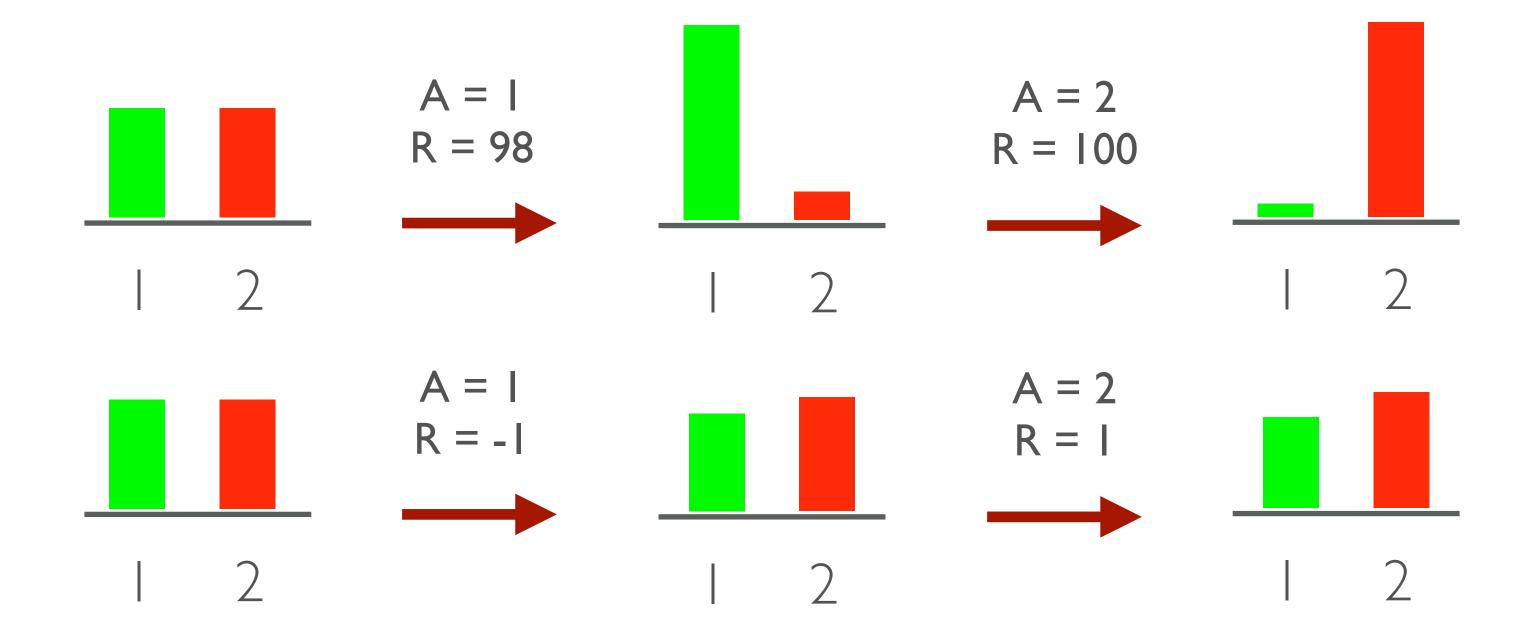
Intuition: variance causes "overshooting" that destabilizes learning

Why does the variance of the gradient matter?

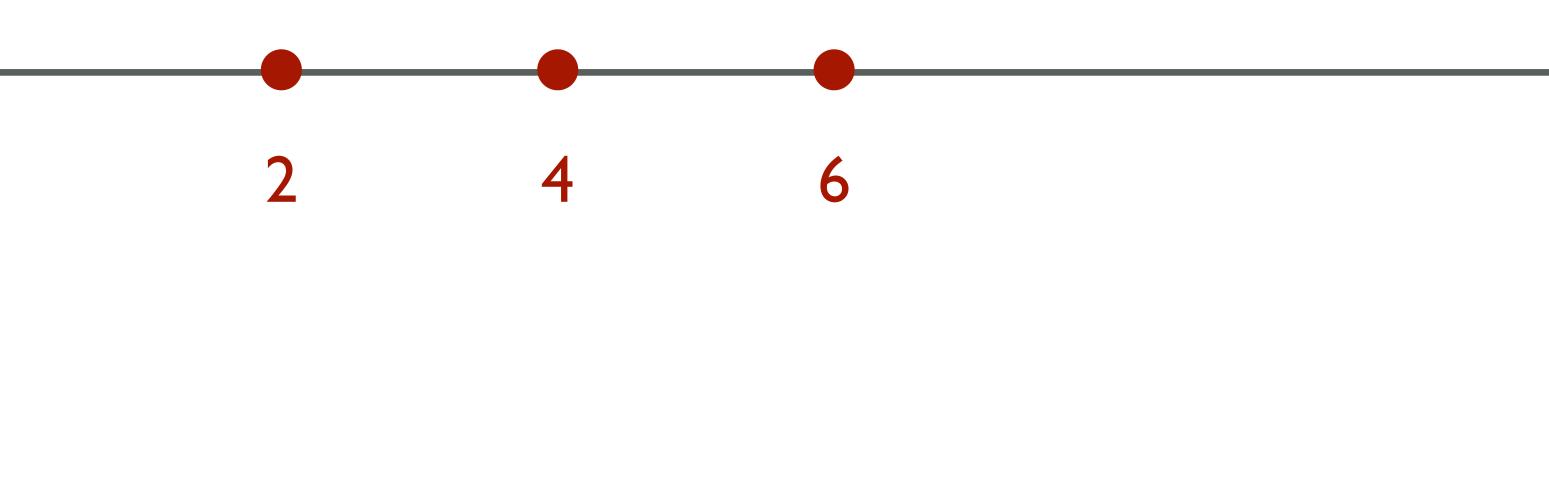
Theory: upper bounds on convergence rate of SGD are directly related to the variance of gradient estimates

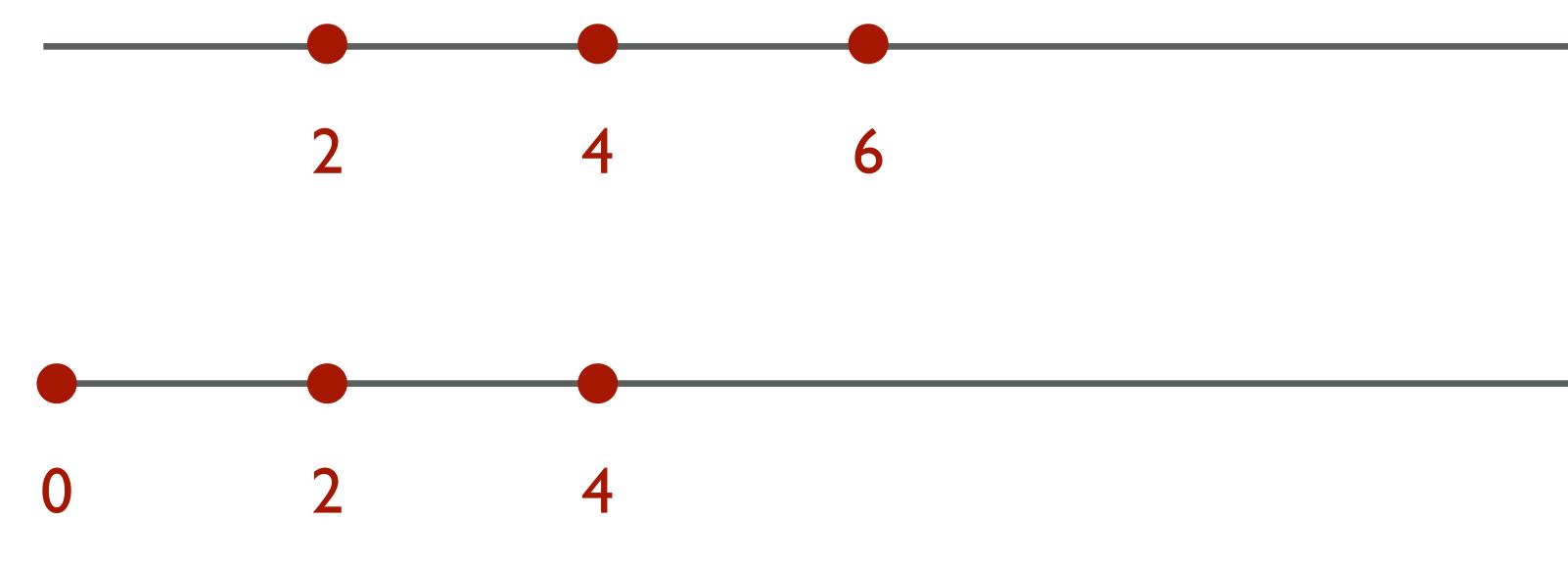
Intuition: variance causes "overshooting" that destabilizes learning

 $H_{t+1}(A_t) \doteq H_t(A_t) + \alpha \big(R_t - \bar{R}_t \big) \big(1 - \pi_t(A_t) \big),$ $H_{t+1}(a) \doteq H_t(a) - \alpha \big(R_t - \bar{R}_t \big) \pi_t(a),$



 $-\bar{R}_t \big) \big(1 - \pi_t(A_t) \big), \quad \text{and} \\ \bar{R}_t \big) \pi_t(a), \quad \text{for all } a \neq A_t$





Original "gradients"

We are NOT subtracting from the gradient

We are subtracting from a number that multiplies the gradient

