Temporal Difference Reinforcement Learning in Time-Constrained Domains

Todd Hester

Learning Agents Research Group Department of Computer Science The University of Texas at Austin

Thesis Proposal September 29, 2010

イロト イポト イヨト イヨ

Motivation Proposed Solution Time-Constrained Domains Background

Robot Learning

< □ > < 同 > < 回 > < 回 > < 回 > < 回

- Robots have the potential to solve many problems
- But they are held back by the need to hand-program them
- We need methods for them to learn and adapt to new situations

Motivation Proposed Solution Time-Constrained Domains Background

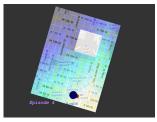
Reinforcement Learning

- Value function RL has string of positive theoretical results [Watkins 1989, Brafman and Tennenholtz 2001]
- Could be used for learning and adaptation on robots
- Typically take too many actions to be practical

• • • • • • • • • • • • •

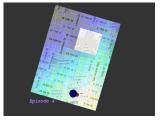
Motivation Proposed Solution Time-Constrained Domains Background

Reinforcement Learning



Q-Learning

- Theoretically proven to converge
- Only updates VF when taking actions in the world



R-Max

- Learns a tabular model
- State-actions with fewer than *m* visits are given *R_{max}* transitions

イロト イポト イヨト イヨ

Motivation Proposed Solution Time-Constrained Domains Background

Sample Complexity of Exploration

Definition: Number of sub-optimal actions the agent must take

- Lower bound is polynomial in N (# of states) and A (# of actions) [Kakade 2003]
- On a very large problem, NA actions is too many
- If actions are expensive, even a few thousand actions may be unacceptable
- What should we do when we do not have enough actions to guarantee convergence to an optimal policy?

Motivation Proposed Solution Time-Constrained Domains Background

Thesis Question

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

イロト イポト イヨト イヨト

э

Motivation Proposed Solution Time-Constrained Domains Background

Thesis Question

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

- Takes actions at specified frequency (not batch mode or policy search)
- Concerned with cumulative reward (not final policy)

Motivation Proposed Solution Time-Constrained Domains Background

Thesis Question

Thesis Question

How should an online reinforcement learning agent act in time-constrained domains?

- Agent has a limited number of time steps
- Not enough time steps to learn optimal policy without some assumptions

ヘロト ヘアト ヘビト ヘビト

э

Motivation Proposed Solution Time-Constrained Domains Background

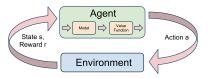
Proposed Solution



- Develop a model-based algorithm
- Incorporate generalization into the model learning
- Target exploration on specific states to improve model
- Novel architecture for real-time action

Motivation Proposed Solution Time-Constrained Domains Background

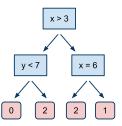
Model-Based RL



- Learn transition and reward dynamics, then update VF using model
- Typically more sample-efficient than model-free approaches
- Can update action-values without taking real actions in the world
- Algorithm is constrained by the number of actions it takes to learn an accurate model

Motivation Proposed Solution Time-Constrained Domains Background

Model Generalization



- Do not want a tabular model (must visit every state)
- Assume that transition and reward dynamics are similar across states
- Generalize these dynamics across states when learning model
- Can make predictions about states the agent has not visited

Motivation Proposed Solution Time-Constrained Domains Background

Targeted Exploration

- The agent is not going to visit every state
- Which states to visit and which not to visit
- Target exploration on states that we are uncertain about
- And states that will be relevant to the final policy

Motivation Proposed Solution Time-Constrained Domains Background

Real-Time Action

< □ > < 同 > < 三 > <

- In many problems, actions must be taken frequently
- Cannot stop and wait for model learning or planning to occur
- Must act in real-time at desired frequency

Motivation Proposed Solution Time-Constrained Domains Background

Sample Complexity of Exploration

- Proven lower bound: $O(\frac{NA}{\epsilon(1-\gamma)}log(\frac{1}{\delta}))$
- For deterministic domains: $O(\frac{NA}{(1-\gamma)})$ [Kakade 2003]
- Efficient RL algorithms require a number of actions polynomial in *N*, *A*, ¹/_ϵ, ¹/_δ, and ¹/_{1-γ}.
- Even these algorithms must take at least this many actions to learn an optimal policy
- Look at cases where the agent does not have enough time steps for these algorithms to learn

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation Proposed Solution Time-Constrained Domains Background

Limited Time Steps

- For many practical problems, we do not have time to take thousands of actions
- Actions may be very time-consuming or expensive
- Need to learn on-line (rewards during learning are important)
- Cannot let the agent break/die during learning

Motivation Proposed Solution Time-Constrained Domains Background

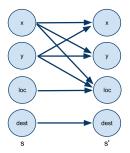
Time-Constrained Problems

- The agent has a lifetime *L* bounding the number of actions it can take
- Time-Constrained if L < 2NA
- Two orders of magnitude less than lower bound
- The agent does not have enough time steps to learn the optimal policy without some additional assumptions about the domain
- Evaluate agent on cumulative reward over L time steps

Domain	No. States	No. Actions	No. State-Actions	Min Bound	Min Bound	Maximum L
				Deterministic	Stochastic	
Taxi	500	6	3,000	300,000	1,050,000	6,000
Four Rooms	100	4	400	40,000	140,000	800
Fuel World	39,711	8	317,688	31,768,800	111,190,800	635,376
Mountain Car	10,000	3	30,000	300,000	10,500,000	60,000
Puddle World	400	4	1,600	160,000	560,000	3,200
Cart Pole	160,000	2	320,000	32,000,000	11,200,000	640,000

Motivation Proposed Solution Time-Constrained Domains Background

Factored Domains



R			G
Y		В	

イロト 不得 トイヨト イヨト 三日

- State is represented by *n* features: $s = \langle x_0, x_1, ..., x_n \rangle$
- Transition represented by Dynamic Bayes Network (DBN)
- Problem: Learn the structure of the DBN
- Also need to learn the conditional probabilities

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

ヘロト ヘアト ヘビト ヘビト

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Why generalize the model?

- Improve Sample efficiency
- Want to learn a model of a large domain
- Do not want to explore every state-action
- Incorporate function approximation into the model learning
- Generalize the transition and reward effects in the model
- Not the same as generalizing Q-values in a model-free method

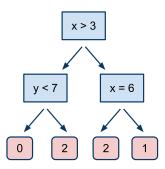
Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Make it a supervised learning problem

- Model learning is a supervised learning problem [AAMAS 2009]
- Input: State and Action
- Output: Next state and reward
- Separate model for each state feature and reward
- Compared Tabular, Decision Trees, Random Forests, SVMs, Neural Networks, and KNN [ICML ARL 2009]
- Decision Tree based models were the best

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Why decision trees?



- Incremental and fast
- Generalize broadly at first, refine over time
- Can learn the structure of DBN

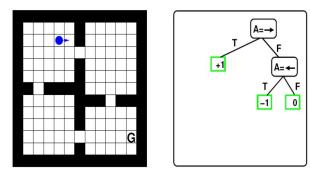
Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Relative Effects

- Predict the change in state: s^r = s^r s rather than absolute next state s^r
- Often actions have the same effect across states
- Previous work predicts relative effects [Jong and Stone 2007] [Leffler et al. 2007]

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

How the Decision Tree Model works



- Build one tree to predict each state feature and reward independently
- Combine their predictions: $P(s^r|s, a) = \prod_{i=0}^{n} P(x_i^r|s, a)$
- Update trees on-line during learning

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

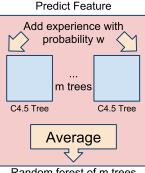
Model Uncertainty

Improve Sample efficiency

- Want some way to measure uncertainty of model
- Can use uncertainty to drive exploration and improve model
- Idea: Learn multiple possible models and compare them [ICDL 2010]

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Random Forest Model

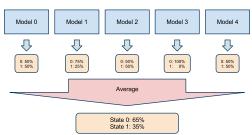


Random forest of m trees

- Build *m* decision trees per forest
- Each tree gets each training experience with probability *w*
- When splitting, each feature is removed from potential split set with probability *f*

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Random Forest Benefits



What state comes next?

- Each tree represents a possible model of the domain
- Averaging the models inherently incorporates possibilities
- Can use the variance of model's predictions as an uncertainty measure

э

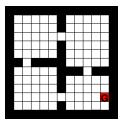
Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

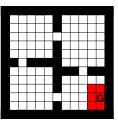
Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Targeted Exploration





イロト イポト イヨト イヨト

Improve Sample efficiency

- Want to target exploration on uncertain states that will be relevant to final policy
- Hypothesize that acting greedily with average model will work well

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Use prediction variance

 Can add exploration bonus reward based on variance of model's predictions [ICDL 2010]

•
$$R(s, a) = R_o(s, a) + b\sigma^2(s, a)$$

•
$$\sigma^2(s,a) = \frac{1}{n+1} [\sigma^2 R(s,a) + \sum_{i=1}^n \sigma^2 P(x_i^e|s,a)]$$

Use average variance from each random forest model (n features + reward)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

TEXPLORE algorithm [ICDL 2010]

- Combine this model learning method and exploration approach with a planner
- Use UCT as the planning algorithm
- Seed the model with a few experiences
- Seed experiences are a natural way to inject human knowledge into the agent

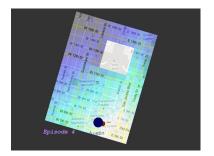
Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

UCT algorithm [Kocsis and Szepesvári 2006]

- Update value of a given state by sampling forward many times and updating towards the average return
- Choose actions at each state based on Upper Confidence Bounds
- $a = \operatorname{argmax}_{a} Q^{d}(s, a) + \sqrt{2\log(C(s, d))/C(s, a, d)}$
- Concentrates updates on parts of the state space agent is likely to visit soon
- Anytime algorithm

イロト 不得 トイヨト イヨト

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains



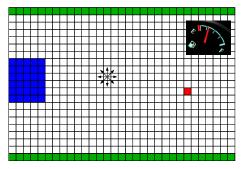
Learns much faster than R-Max or Q-Learning

Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

イロト イ押ト イヨト イヨト

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

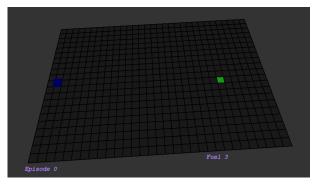
Fuel World



- Most of state space is very predictable
- But fuel stations have varying costs
- Want to explore mainly fuel stations, and particularly ones on short path to goal

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

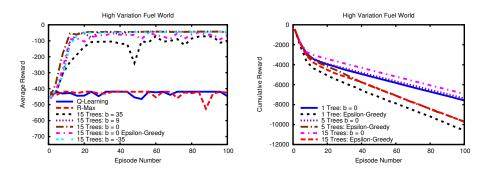
Fuel World Behavior



- Agent focuses its exploration on fuel stations near the shortest path to the goal.
- Agent finds near-optimal policies.

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

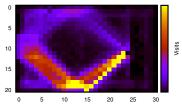
Fuel World Rewards



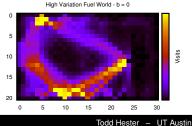
Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

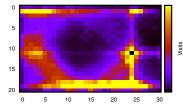
Where did the agent explore?



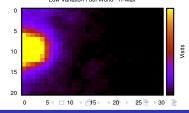
Low Variation Fuel World - b = 0



Low Variation Fuel World - b = 35



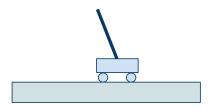
Low Variation Fuel World - R-Max



Istin Temporal Difference RL in Time-Constrained Domains

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Results: Cart-Pole

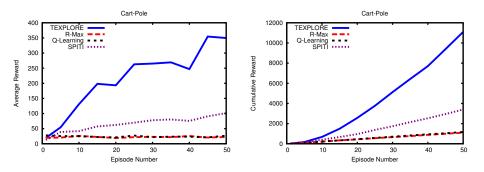


- State Features: Pole Angle, Pole Vel, Cart Pos, Cart Vel
- Two Actions: -Force, +Force
- Reward +1 until pole falls or cart moves too far
- Discretized each dimension into 20 values

< □ > < 同 > < 回 > < 回 > < 回 > < 回

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Cart-Pole Rewards



Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

イロト イ押ト イヨト イヨト

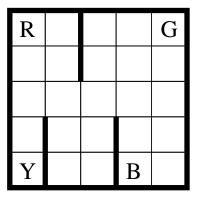
Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Additional Results

- From Previous Algorithm: RL-DT [AAMAS 2009]
- Used single decision tree model rather than random forest
- No measure of model uncertainty, so no targeted exploration
- Exploration heuristic: Until agent sees reward near *R_{max}*, it explores unvisited states

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Results: Taxi [Dietterich 1998]

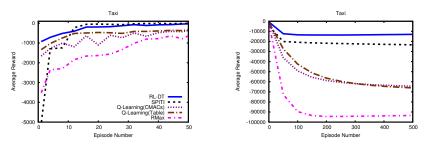


- State Features: x, y, passenger, destination
- Six Actions: East, West, North, South, PickUp, PutDown
- Stochastic: Move in intended direction 80% of time

ヘロト ヘ戸ト ヘヨト ヘヨト

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Results: Taxi



- Performs better on first episode
- Converged in fewer steps (more episodes) than SPITI
- Greater cumulative rewards

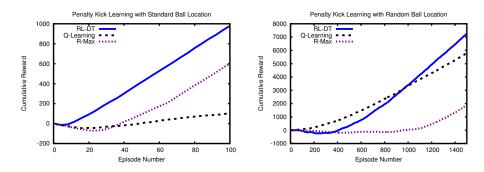
ъ

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Robot Experiments [ICRA 2010]

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

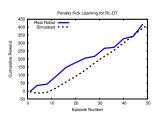
Simulated Results



Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

Generalized Models Model Uncertainty Targeted Exploration RL Method for Time-Constrained Domains

Physical Robot Results



イロト イポト イヨト イ

3

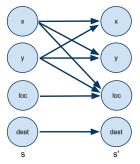
Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Dependent Feature Transitions



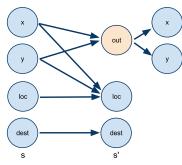
R			G
Y		В	

→ Ξ → < Ξ →</p>

- Make model more accurate and robust
- Algorithm applies to more domains
- Features sometimes transition together

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Dependent Feature Transitions



R			G
Y		В	

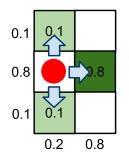
< < >> < <</>

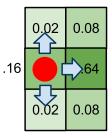
→ Ξ → < Ξ →</p>

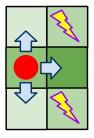
- Make model more accurate and robust
- Algorithm applies to more domains
- Features sometimes transition together

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Dependent Feature Transitions



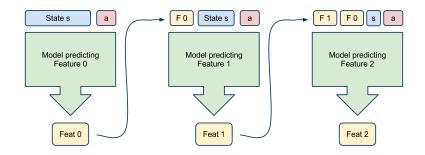




イロト イ押ト イヨト イヨト

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Proposed Dependent Feature Modeling

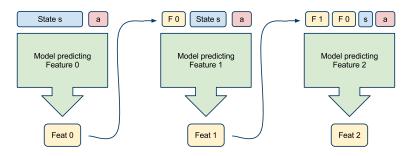


イロト 不得 トイヨト イヨト

ъ

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Proposed Dependent Feature Modeling



- What if predicting one feature is harder than predicting the other?
- What if its easier to predict x₁ from x₀ rather than x₀ from x₁?

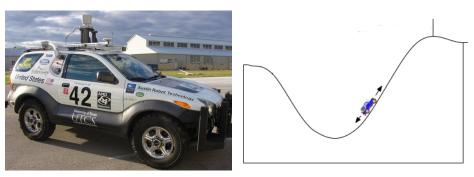
Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Continuous Problems

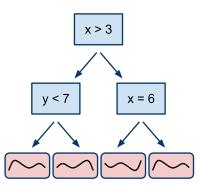


- Most real-world problems are continuous
- First step: Quantize state space

< □ > < 同 > < 三

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Continuous Models



- Regression trees: More computation?
- Gaussian Process Regression

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Continuous Planning

- Fitted Value Iteration [Gordon 1995]
 - Update values for sampled set of states
 - Use function approximator to fit value function
 - Probably computationally slow like VI
- Fitted UCT
 - Can we fit a value function here?
 - Also must maintain visit counts

< □ > < □ > < □ > < □ >

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Real-Time Need

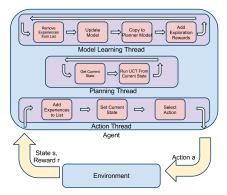
- Sometimes planning takes too long
- Sometimes model learning takes too long

Todd Hester – UT Austin Temporal Difference RL in Time-Constrained Domains

< < >> < <</>

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Proposed Real-Time Architecture



- Model learning and planning on background threads
- Threads interact through mutex locked data structures
- Can operate at specified action frequency

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

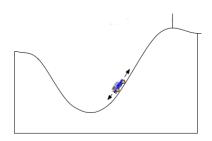
Empirical Evaluation

Evaluation Criteria

- Compare cumulative rewards because we are interested in online learning
- Look at sum of rewards over the L time steps given to the agent
- Evaluate on tasks that require real-time actions (robots)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Empirical Evaluation



- Typical RL Benchmarks (Mountain Car, Cart Pole, Acrobot)
- Robot Tasks: Nao robot, Autonomous vehicle
- Compare with PAC MDP efficient algorithms (MET-RMAX)
- Try to compare with Bayesian RL on small problem

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Expected Contributions

- Generalized Models (C)
- Model Uncertainty (C)
- Targeted Exploration (C)
- RL Method for Time-Constrained Domains (C)
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

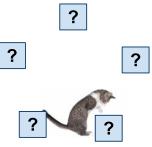
Curious Agents

Alternate Evaluation Criteria

- What does the agent do without external rewards?
- How does the agent explore given a distribution of possible future tasks?

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

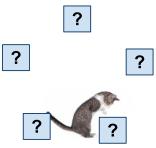
InfoMax [Fasel et al. 2010]



- Partially observable state space
- Agent receives internal rewards proportional to negative entropy of agent's belief distribution
- Learns to take actions to maximize the information it knows about the world

Model Learning with Dependent Feature Transitions Extensions to Continuous Domains Real-Time Architecture Empirical Evaluation Curious Agents

Curious Agents



- Does b > 0 with no external rewards compare with InfoMax?
- Can we learn to explore for a distribution of possible future tasks?
- Our agent should focus exploration on parts that are relevant to future tasks, rather than exploring fully

• • • • • • • • • • • •

Related Work Conclusion

- Bayesian RL
- PAC MDP Efficient algorithms
- Intrinsic Motivation
- Generalized Models
- Real Time Architectures

イロト イポト イヨト イヨト

Related Work Conclusion

- Offers optimal solution to exploration problem [Duff 2003]
- Computationally intractable
- Many approximate solutions:
 - Tie model parameters together [Poupart et al. 2006]
 - Sample from model distributions [Strens 2000, Asmuth et al. 2009]
 - Learn Bayesian optimal policy over time [Kolter and Ng 2009]

Related Work Conclusion

Value of Information Approaches

Model-Based Bayesian Exploration [Dearden et al. 1999]

- Maintain belief over models
- Sample and plan on k models
- Utilize distribution over q-values to calculate VPI: improvement in policy value · probability
- Add this onto average value from value functions

・ 同 ト ・ ヨ ト ・ ヨ

Related Work Conclusion

PAC MDP Efficient Algorithms

- MET-RMAX [Diuk et al. 2009]
 - Assume Transition dynamics are represented by DBN with *n* binary factors and in-degree *D*
 - Consider all possible parent combinations $\binom{n}{D}$
 - Separate meteorologist predicts based on each possible parent
 - If any meteorologist does not know the answer, use Rmax
 - If meteorologists disagree, use R_{max}
 - Remove meteorologists with significantly more error
 - $\binom{n}{D}$ can be very large, *D* provided

ヘロト ヘ戸ト ヘヨト ヘヨト

Related Work Conclusion

Intrinsic Motivation

- Simsek and Barto [2006]
 - Model-free approach
 - Intrinsic rewards for where value function improves the most
- Intelligent Adaptive Curiosity [Oudeyer et al. 2007]
 - Learn separate dynamics models for different regions of statespace
 - Provide intrinsic rewards based on slope of error curve in each region
 - Only one-step planning, does not use RL/MDP framework

Related Work Conclusion

Supervised Learning of Models

- SPITI [Degris et al. 2006]
 - Learn decision tree models for each feature
 - Used
 e-greedy exploration
- AMBI [Jong and Stone 2007]
 - Instance-based model with relative effects
 - R_{max} bonus for state regions with few visits
- GPRL [Deisenroth and Rasmussen 2009]
 - Use Gaussian Process regression to model dynamics
 - Exploration based on variance of GP predictions
 - Batch mode, agent is provided reward model

Related Work Conclusion

Real-Time Methods

- Dyna Framework [Sutton 1990, 1991]
 - Do Bellman updates on random states using model when not action
 - Still uses tabular model, assumes model update takes insignificant time
- Combining sample-based planning with model-based method
 - With UCT [Silver et al. 2008]
 - With new FSSS [Walsh et al. 2010]
 - Neither places a time restriction on model update or planning

Related Work Conclusion

Where will this apply?

- Assumes domains have similar transition and reward effects across states
- Requires factored domains
- Can run in real-time at specified frequency
- Can learn in a limited number of time steps in domain
- Applicable to robots and other real-world problems

Related Work Conclusion

Robot Learning

< < >> < <</>

э

- A - E - M

 Real-time sample-efficient reinforcement learning on domains with a limited number of time-steps

Related Work Conclusion

Thank You

- Generalized Models (C) [AAMAS, ICML ARL 2009]
- Model Uncertainty (C) [ICDL 2010]
- Targeted Exploration (C) [ICDL 2010]
- RL Method for Time-Constrained Domains (C) [ICRA, ICDL 2010]
- Model Learning with Dependent Feature Transitions (P)
- Extensions to Continuous Domains (P)
- Real-Time Architecture (P)
- Empirical Evaluation (P)
- Curious Agents (P)

イロト イ押ト イヨト イヨト

э.