
Assistant Professor, Department of Computer Science
The University of Texas at Austin

IMITATION LEARNING

Scott Niekum

Imitation learning
Part 1: Modes of input

Introduction

Modes of input

Sensing

Introduction: Why learn from demonstration?

Introduction: Why learn from demonstration?

General purpose
robot

Introduction: Why learn from demonstration?

General purpose
robot Specific task

Introduction: Why learn from demonstration?

General purpose
robot Specific task Expert engineer

Programming robots is hard!

? ? ??•Huge number of possible tasks
•Unique environmental demands
•Tasks difficult to describe formally
•Expert engineering impractical

Introduction: Why learn from demonstration?

•Natural, expressive way to program
•No expert knowledge required
•Valuable human intuition
•Program new tasks as-needed

Introduction: Why learn from demonstration?

Introduction: Why learn from demonstration?

How can robots be shown how to perform tasks?

•Natural, expressive way to program
•No expert knowledge required
•Valuable human intuition
•Program new tasks as-needed

Introduction

Modes of input

Sensing

Sensing: RGB(D) cameras, depth sensors

• Standard RGB cameras
• Stereo: Bumblebee
• RGB-D: Microsoft Kinect
• Time of flight: Swiss Ranger
• LIDAR: SICK

Sensing: Visual fiducials

AR tags
RUNE-129 tags http://wiki.ros.org/ar_track_alvar

http://wiki.ros.org/ar_track_alvar

Sensing: Wearable sensors

SARCOS Sensuit:

Other wearables:

Record 35-DOF poses
at 100 Hz

•Accelerometers
•Pressure sensors
•First-person video

Sensing: Motion capture

Phasespace

Vicon

Introduction

Modes of input

Sensing

The correspondence problem

state-action mapping?

The correspondence problem

Learning by watching:

Learning by doing:

Define / learn a correspondence

Avoid correspondence entirely

How to provide demonstrations?
Two primary modes of input:

Learning by watching: Simplified mimicry

Object-based

End effector-based

Learning by watching: Shadowing

Learning by doing: Teleoperation

Learning by doing: Kinesthetic demonstration

Learning by doing: Keyframe demonstration

[Akgun et al. 2012]

Supplementary information: Speech and critique

Interpreting natural
language commands

Realtime user feedback
given to RL system
[Knox et al. 2008]

[Goyal et al. 2019]

"Jump over the skull while going
to the left”

Supplementary information: gaze

Human gaze to communicate
intention of a demonstration

[Saran et al. 2019]

Imitation learning
Part 2: Algorithms

Behavioral cloning

Supervised learning problem:
Demos Policy

i.e. from example (s,a) pairs, learn pi(s,a)

Behavioral cloning

Supervised learning problem:
Demos Policy

i.e. from example (s,a) pairs, learn pi(s,a)

What if we want to learn from experience via RL?

Inverse reinforcement learning:
Demos PolicyInferred intent

(reward function)

Learning task objectives: Inverse reinforcement learning

Helicopter tricks

Littledog walking

[Abbeel et al. 2007]

[Kolter et al. 2007]

Learning task objectives: Inverse reinforcement learning

Reinforcement learning basics:

MDP: (S,A, T, �, D,R)

Policy:

Value function: V ⇡(s0) =
1X

t=0

�tR(st)

states actions transition dynamics

discount rate start state
distribution

reward function

What if we have an MDP/R?

Learning task objectives: Inverse reinforcement learning

2. Explain expert demos by finding such that:R⇤

1. Collect user demonstration (s0, a0), (s1, a1), . . . , (sn, an)

⇡Eand assume it is sampled from the expert’s policy,

E[
P1

t=0 �
tR⇤(st)|⇡E] E[

P1
t=0 �

tR⇤(st)|⇡]

8⇡Es0⇠D[V ⇡E

(s0)] Es0⇠D[V ⇡(s0)]

8⇡�

�

How can search be made tractable?

[Abbeel and Ng 2004]

Learning task objectives: Inverse reinforcement learning

Define R⇤ as a linear combination of features:
R⇤(s) = wT�(s) , where � : S ! Rn

Then,
E[

P1
t=0 �

tR⇤(st)|⇡] = E[
P1

t=0 �
twT�(st)|⇡]

= wTE[
P1

t=0 �
t�(st)|⇡]

Thus, the expected value of a policy can be expressed as
a weighted sum of the expected features µ(⇡)

[Abbeel and Ng 2004]

Learning task objectives: Inverse reinforcement learning

Originally -

E[
P1

t=0 �
tR⇤(st)|⇡E] E[

P1
t=0 �

tR⇤(st)|⇡] 8⇡

Restated - find such that:

Explain expert demos by finding such that:R⇤

w⇤µ(⇡E) w⇤µ(⇡)

�

�

Use expected features:

8⇡

E[
P1

t=0 �
tR⇤(st)|⇡]

[Abbeel and Ng 2004]

Learning task objectives: Inverse reinforcement learning

Find such that: 8⇡

2. Find s.t. expert maximally outperforms all previously

1. Initialize to any policy⇡0

Iterate for i =1, 2, … :

examined policies :⇡0...i�1

w⇤µ(⇡E) � w⇤µ(⇡j) + ✏s.t.

w⇤µ(⇡E) w⇤µ(⇡)�

3. Use RL to calc. optimal policy associated with

max
✏,w⇤:kw⇤k21

✏

w⇤

4. Stop if ✏ threshold

Goal:

[Abbeel and Ng 2004]

Learning task objectives: Inverse reinforcement learning

Find such that: 8⇡

2. Find s.t. expert maximally outperforms all previously

1. Initialize to any policy⇡0

Iterate for i =1, 2, … :

examined policies :⇡0...i�1

w⇤µ(⇡E) � w⇤µ(⇡j) + ✏s.t.

w⇤µ(⇡E) w⇤µ(⇡)�

3. Use RL to calc. optimal policy associated with

max
✏,w⇤:kw⇤k21

✏

w⇤

4. Stop if ✏ threshold

Goal:

SVM
solver

[Abbeel and Ng 2004]

Imitation learning

• Use MCMC to sample from posterior:

• Assume demonstrations follow softmax policy with temperature c:

Resolving ambiguity: Bayesian Inverse Reinforcement Learning
[Ramachandran and Amir 2007]

Problem: Don’t assume any more about what decisions you should make than what
the data directly implies. In all other cases, be agnostic.

Resolving ambiguity: Maximum Entropy IRL
[Ziebart et al. 2008]

Note that all trajectories with the same return have the same probability.

MaxEnt IRL finds the reward function that induces the highest entropy (“flattest”)
trajectory distribution that matches the features counts of the expert, under the
following likelihood function:

Problems with standard inverse reinforcement learning

Policy learning in inner loop Cannot outperform demonstrator

• matches feature counts or
maximizes p(demo | reward fxn)

• Assumes demonstrator is
(near) optimal

• some methods learn optimal
policy / value function for
candidate reward functions

• others alternate policy updates
and reward updates

Assumption:

D.S. Brown, W. Goo, and S. Niekum.
Extrapolating Beyond Suboptimal Demonstrations via
Inverse Reinforcement Learning from Observations.
International Conference on Machine Learning (ICML), June 2019.

IRL should assume that the expert is near-optimal

Ranked, suboptimal demonstrations provide significant
computational and performance benefits

T-REX: Trajectory-ranked Reward Extrapolation

• Fully supervised — no policy learning
• No action labels required
• Extrapolation potential
• Works on high-dim (e.g. Atari) with ~10 demos

Data augmentation

Rank 1

Rank 2

Rank n

Rank n-1

Data augmentation

Rank 1

Rank 2

Rank n

Subsampling

Rank n-1

Data augmentation

Rank 1

Rank 2

Rank n

Supersampling

Rank n-1

Data augmentation

Rank 1

Rank 2

Rank n

Rank n-1

Frame skipping

T-REX reward prediction

HalfCheetah Hopper Ant

Beam Rider Seaquest Enduro

Ranked demonstrations: HalfCheetah

12.52 44.98 88.97

Results: HalfCheetah

Best demo (88.97) T-REX (143.40)

Results: Atari

Best demo (600) T-REX (1495)

T-REX vs. SOTA imitation learning

HalfCheetah Hopper

GT GT

T-REX vs. SOTA imitation learning

Beamrider Breakout

Frame stacks: best vs. worst reward

Best

Worst

Reward heat maps

Max frameMin frame Medium frame

How hard is it to get rankings?

• Collect human trajectory rankings

• Watch a human (or agent) learn and noisily improve

• Add progressively more noise to near-optimal demonstrations

• Have access to a performance metric, but infer more dense reward

Robustness to pairwise ranking noise

D-REX: Auto-generated rankings

Unranked
Demonstrations

“Ranked”
Trajectories

⇡BC
<latexit sha1_base64="PLWCD3SgGajO2QQkkifPzCoRMSM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY2ovHCvYD2lA220m7dLOJuxuhhP4JLx4U8erf8ea/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH8w0QT+iI8lDzqixVref8EFWb8wG5YpbdRci6+DlUIFczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sse+MXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmx5MhV8iMmFqgTHG7K2FjqigzNqKSDcFbPXkd2ldVz/L9daVWz+MowhmcwyV4cAM1uIMmtICBgGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/jtY/b</latexit><latexit sha1_base64="PLWCD3SgGajO2QQkkifPzCoRMSM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY2ovHCvYD2lA220m7dLOJuxuhhP4JLx4U8erf8ea/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH8w0QT+iI8lDzqixVref8EFWb8wG5YpbdRci6+DlUIFczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sse+MXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmx5MhV8iMmFqgTHG7K2FjqigzNqKSDcFbPXkd2ldVz/L9daVWz+MowhmcwyV4cAM1uIMmtICBgGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/jtY/b</latexit><latexit sha1_base64="PLWCD3SgGajO2QQkkifPzCoRMSM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY2ovHCvYD2lA220m7dLOJuxuhhP4JLx4U8erf8ea/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH8w0QT+iI8lDzqixVref8EFWb8wG5YpbdRci6+DlUIFczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sse+MXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmx5MhV8iMmFqgTHG7K2FjqigzNqKSDcFbPXkd2ldVz/L9daVWz+MowhmcwyV4cAM1uIMmtICBgGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/jtY/b</latexit><latexit sha1_base64="PLWCD3SgGajO2QQkkifPzCoRMSM=">AAAB73icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY2ovHCvYD2lA220m7dLOJuxuhhP4JLx4U8erf8ea/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk8a83nlCpXksH8w0QT+iI8lDzqixVref8EFWb8wG5YpbdRci6+DlUIFczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9i5JGqP1sse+MXFhnSMJY2ScNWbi/JzIaaT2NAtsZUTPWq7W5+V+tl5rw1s+4TFKDki0/ClNBTEzmx5MhV8iMmFqgTHG7K2FjqigzNqKSDcFbPXkd2ldVz/L9daVWz+MowhmcwyV4cAM1uIMmtICBgGd4hTfn0Xlx3p2PZWvByWdO4Y+czx/jtY/b</latexit>

Behavioral
Cloning

Noise-modified
Rollouts

Increasing
Noise

D. Brown, W. Goo, and S. Niekum.
Ranking-Based Reward Extrapolation without Rankings
Conference on Robot Learning (CoRL), October 2019.

Learning a task plan: Finite state automata

[Niekum et al. 2013]

?

Unsegmented demonstrations
of multi-step tasks Finite-state task

representation

Learning a task plan: Finite state automata

[Niekum et al. 2013]

y1 y2 y3 y4 y5 y6 y7 y8

Learning a task plan: Finite state automata

[Niekum et al. 2013]

x1 x2 x3 x4 x5 x6 x7 x8Skills

Observations

Standard Hidden Markov Model

y(i)
t =

rX

j=1

A
j,z(i)

t
y(i)
t�j + e(i)t (z(i)t)

y1 y2 y3 y4 y5 y6 y7 y8

Learning a task plan: Finite state automata

[Niekum et al. 2013]

x1 x2 x3 x4 x5 x6 x7 x8Skills

Observations

Autoregressive Hidden Markov Model

y(i)
t =

rX

j=1

A
j,z(i)

t
y(i)
t�j + e(i)t (z(i)t)

6 6 3 1 1 3 11 10

y1 y2 y3 y4 y5 y6 y7 y8

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Skills

Observations

Autoregressive Hidden Markov Model

y(i)
t =

rX

j=1

A
j,z(i)

t
y(i)
t�j + e(i)t (z(i)t)

6 6 3 1 1 3 11 10

y1 y2 y3 y4 y5 y6 y7 y8

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Skills

Observations

Autoregressive Hidden Markov Model

y(i)
t =

rX

j=1

A
j,z(i)

t
y(i)
t�j + e(i)t (z(i)t)

6 6 3 1 1 3 11 10

y1 y2 y3 y4 y5 y6 y7 y8

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Skills

Observations

Autoregressive Hidden Markov Model

unknown
number!

Beta Process

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Task
demos

Joint angles Forward kinematics

Object recognition

Preprocessing /
BP-AR-HMM
segmentation Segmented

skills

Coordinate frame
detection Frame-

labeled
segments

Gripper pose

Stereo data

Learning from
demonstration

DMPs
with frame-
relative goals

DMP planning /
inverse kinematics Joint trajectory

spline controller

Joint angles

Gripper pose

Stereo data

Realtime data from
a novel task

Forward kinematics

Object recognition

Red object
coord. frame

Learning multi-step tasks from unstructured demonstrations

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Learning a task plan: Finite state automata

[Niekum et al. 2013]

Controller built from motion category examples

Classifier built from robot percepts

Interactive corrections

[Niekum et al. 2013]

Replay with corrections: missed grasp

[Niekum et al. 2013]

Replay with corrections: too far away

[Niekum et al. 2013]

Replay with corrections: full run

[Niekum et al. 2013]

The Personal Autonomous Robotics Lab

