
CS885 Reinforcement Learning
Module 2: June 6, 2020

Maximum Entropy Reinforcement Learning

Haarnoja, Tang et al. (2017) Reinforcement Learning with Deep 
Energy Based Policies, ICML.

Haarnoja, Zhou et al. (2018) Soft Actor-Critic: Off-Policy Maximum 
Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML.  
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Reinforcement Learning

Determinis)c Policies
• There always exists an 

optimal deterministic policy

• Search space is smaller for 

deterministic than 

stochastic policies

• Practitioners prefer 

deterministic policies

Stochastic Policies
• Search space is continuous 

for stochastic policies (helps 

with gradient descent)

• More robust (less likely to 

overfit)

• Naturally incorporate 

exploration

• Facilitate transfer learning

• Mitigate local optima
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Encouraging Stochasticity

Standard MDP
• States: !
• Actions: "
• Reward: #(%, ')
• Transition: Pr(%!|%, ')
• Discount: ,

Soft MDP
• States: !
• Actions: "
• Reward: # %, ' + ./ 0 ⋅ %
• Transition: Pr(%!|%, ')
• Discount: ,
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OpDmal Policy
• Standard MDP

"∗ = argmax
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• Soft MDP
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Maximum entropy policy
Entropy regularized policy



CS885 Spring 2020 Pascal Poupart 7

Q-function

• Standard MDP

4" -%, /% = , -%, /% +)
#$.
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• Soft MDP
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NB: No entropy with first reward term 
since action is not chosen according to "
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Greedy Policy

• Standard MDP (deterministic policy)

0'())*+(%) = argmax
,

7(%, ')

• Soft MDP (stochastic policy)
0'())*+ ⋅ % = argmax

-
∑, 0 '|% 7 %, ' + ./ 0 ⋅ %

= ./0 1 2,⋅ /6
∑0 ./0 1 2,, /6

= %9:;<'=(7 %,⋅ /.)

when . → 0 then %9:;<'= becomes regular max
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Soft Policy Iteration
SoftPolicyIteration(MDP, 1)

Initialize "% to any policy
7 ← 0
Repeat 

Policy evaluation:
Repeat until convergence
4'+,-
"1 -, / ← , -, /

+*∑'0 Pr -
3 -, / ∑)0 "1 /′ -′ 4'+,-

"1 -′, /′ + 12 "1 ⋅ -′ ∀-, /

Policy improvement:

"12. / - ← -EFGH/I 4'+,-
"1 -, / /1 =

;<= >2345
61 ',) /4

∑70 ;<= >2345
61 ',)0 /4 ∀-, /

7 ← 7 + 1

Until 4'+,-
"1 -, / − 4'+,-

"189 -, /
/
≤ D
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Soft Actor-Critic

• RL version of soft policy iteration
• Use neural networks to represent policy and value 

function
• At each policy improvement step, project new policy 

in the space of parameterized neural nets
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Soft Actor Critic (SAC)

University of Waterloo

Initialize weights H, IH, J at random in [−1,1]
Observe current state /
Loop

Sample action 7~3;(⋅ |/) and execute it
Receive immediate reward P
Observe new state /’
Add (/, 7, /<, P) to experience buffer 
Sample mini-batch of experiences from buffer
For each experience /̂, S7, /̂<, P̂ in mini-batch

Sample S7′~3;(⋅ |/̂′)

Gradient: =>((=? = 8?
#$%& /̂, S7 − P̂ − U[Q @A

#$%& /̂<, S7< + 12 3; ⋅ /̂< ) =-'
"#$% #̂, C,
=?

Update weights: H ← H − X =>((
=?

Update policy: J ← J − X
=DE 3; /YZ[\7] 8@F

#$%&/1
=;

Update state: / ← /’
Every _ steps, update target: IH ← H


