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Z(z,a)

D

Distributional RL (Bellemare et al. 2017)
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Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy =, (b)
Discounting shrinks the distribution towards 0, (c¢) The reward
shifts it, and (d) Projection step (Section 4).



Distributional RL (Bellemare et al. 2017)
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Figure 5. Intrinsic stochasticity in PONG.



Distributional RL (Bellemare et al. 2017)

Mean | Median | > H.B. | > DQN
DQN 228% 79% 24 0
DDQN 307% 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
C51 701 % 178 % 40 50
UNREAL' 880% 250% - -

Figure 6. Mean and median scores across 57 Atari games, mea-
sured as percentages of human baseline (H.B., Nair et al., 2015).

% Improvement (Log Scale)

Figure 7. Percentage improvement, per-game, of C51 over Dou-

ble DQN, computed using van Hasselt et al.’s method.




What is distributional RL doing? (Lyle et al. 2019)

* Reduces chattering?
» Stabilizes updates, handles nonstationarity?

* Good auxiliary task?



What is distributional RL doing? (Lyle et al. 2019)

» |ldentical expectations computed in most tabular and linear approx cases
* And when predictions are different, actually hurts performance often!
* But usually helps with nonlinear function approximation (e.g. DNN)

* Good auxiliary task for representation learning /regularization!?



What is meta-learning?

* |f you’ve learned 100 tasks already, can you
figure out how to /learn more efficiently?

Follow the
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* Many formulations
* Learning an optimizer
* Learning an RNN that ingests experience

* Learning a representation

iImage credit: Ke Li

Slide credit: Sergey Levine



Why is meta-learning a good idea?

* Deep reinforcement learning, especially model-free, requires a
huge number of samples

* [f we can meta-learn a faster reinforcement learner, we can learn
new tasks efficiently!

* What can a meta-learned learner do differently?

* Explore more intelligently
* Avoid trying actions that are know to be useless
* Acquire the right features more quickly

Slide credit: Sergey Levine



Meta-learning with supervised learning

training data test set

meta-testing

image credit: Ravi & Larochelle ‘17

Slide credit: Sergey Levine



Meta-learning with supervised learning

training data test set
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supervised learning: f(x) — y
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input (e.g., image) output (e.g., label)
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| ' | \ - * More on this later
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Slide credit: Sergey Levine



RNN-based meta-learning
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The meta-learning problem in RL

supervised meta-learning: f(Dipain, ) — ¥

reinforcement meta-learning (for example...): f(Dirain, S) — @
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Back to representations...
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is pretraining a type of meta-learning?
better features = faster learning of new task!

Slide credit: Sergey Levine



Preparing a model for faster learning

Finn et al., “Model-Agnostic Meta-Learning”

®

\—/

X

—=—=0—

— meta-learning
0 ---- |earning/adaptation

VL3
VL
VE] ’’’’’’ ’ .‘"

0r

TR

0 0+a) VoRi0+aVeR(0)]

Slide credit: Sergey Levine



Meta-learning summary & open problems

* Meta-learning = learning to learn

* Supervised meta-learning = supervised learning with datapoints that
are entire datasets

* RL meta-learning with RNN policies
* Ingest past experience with RNN

* Simply run forward pass at test time to “learn”
e Just contextual policies (no actual learning)

* Model-agnostic meta-learning
* Use gradient descent (e.g., policy gradient) learning rule

* Conceptually not that different
* ...but can accelerate standard RL algorithms (e.g., learn in one iteration of PG)

Slide credit: Sergey Levine



Meta-learning summary & open problems

* The promise of meta-learning: use past experience to simply acquire a
much more efficient deep RL algorithm

* The reality of meta-learning: mostly works well on smaller problems
 ...but getting better all the time

* Main limitations
* RNN policies are extremely hard to train, and likely not scalable
* Model-aghostic meta-learning presents a tough optimization problem
* Designing the right task distribution is hard
* Generally very sensitive to task distribution (meta-overfitting)

Slide credit: Sergey Levine



Why not just initialize parameters to those that give the
best average performance across tasks?

— meta-learning
9 ---- learning/adaptation
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Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.



Isn’t MAML just parameter initialization?

No! Surprisingly, MAML is universal:
it can learn any update rule, in principle



Leveraging auxiliary data sources and multiple
data modalities for increased efficiency
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Auxiliary video alighment

W. Goo and S. Niekum.

One Shot Learning of Multi-Step Tasks from Observation

via Activity Localization in Auxiliary Video

International Conference on Robotics and Automation, May 2019.

"Jump over the skull while
going to the left”
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Natural language narration Gaze and facial expressions
P. Goyal, S. Niekum, and R. Mooney. A. Saran, E.S. Short, A.L. Thomaz, and S. Niekum.
Using Natural Language for Reward Shaping in RL Understanding Teacher Gaze Patterns for Robot Learning.
International Joint Conference on Al, August 2019. Conference on Robot Learning (CoRL), October 2019.



Colored Target Reaching Task
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Subtask A: Subtask B:
Reaching to an orange target Reaching to a green target
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One-Shot Learning from Observation for Multi-Step Tasks
via Activity Localization in Auxiliary Video
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...then perform IRL



Experiment - Meta-Training

T1 ; target

videos with preselected 36 target colors, 100 videos per each task

and

T ; target blue and

Meta-Training dataset;

, b

Th, ; target purple and red
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Learning from Observation (LfO) -
Approach

* Learning a notion of progress
* Shuffle-and-Learn loss Are the frames in order?

g(= =) = 1;inorder
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For all possible pairs,

Loss = L..(sigmoid(g(os,04)), 1(t < t)),



Learning from Observation (LfO) - Result
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Result - the whole pipeline
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Results - Breakfast dataset
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Gaze — a signal of Human Intent




Gaze Patterns in Human Demonstrations for Robots

Keyframe-based Kinesthetic Teaching (KT) Observational/Video Demonstrations




Gaze Fixations during Ambiguous Placement Demonstrations

Instruction: Place Green Ladle to the right of Yellow Bowl

Robot Gripper
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More fixations on the yellow bowl



Gaze Fixations during Ambiguous Placement Demonstrations




Kinesthetic Demos:
Novice Users focus more on the Robot's Gripper

% Time
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Reward Learning for the Placement Task

Reward functions modeled as
weighted RBF kernels near objects

Gaze augmented Bayesian IRL for Placement Task

P(R|D,G) < P(D|R)P(R|G)

Penalize reward functions for which

pairwise gaze fixation times are not

ranked according to corresponding
object weights




Bayesian IRL using Gaze from Ambiguous Demonstrations

“Place green ladle to the right of the yellow bowl”

Robot Gripper
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BIRL without Gaze Information

“Place green ladle to the right of the yellow bowl”




BIRL with Gaze Information

“Place green ladle to the right of the yellow bowl”




Coverage-based Gaze Loss (CGL)

e Only required during training as part of an auxiliary loss function
e (Can be applied to any existing Imitation Learning network with convolutional
layers

e |mproved performance without varying model complexity

Convolutional layer Normalized and

Gaze Heatmap from
/‘ output collapsed conv output

demonstrator

Intuition: Add a penalty for regions where gaze fixations are non-zero, but are
not attended to by convolutional layers



CGL: Coverage-based Gaze Loss

(a) Input image (d) T-REX+CGL

A.Saran, R. Zhang, E.S. Short, and S. Niekum.
Efficiently Guiding Imitation Learning Algorithms with Human Gaze.
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2021.



https://arxiv.org/abs/2002.12500

BCO and T-REX + Gaze

Table 1: BCO performance with and without the usage of

, Table 2: T-REX performance with and without the usage of
human demonstrators’ gaze

expert human demonstrators’ gaze

Game Human BCO BCO+GMD BCO+CGL

Breakout 344 - 554 0.2 0.0 0.6 Game Human T-REX  T-REX+CGL
Hero 34305 - 50485 0.0 0.0 1469.0 -

MsPacman 17441 - 92610  90.0 70.0 210.0 Asterix 83000-537500  23926.7 99468.3
Asterix 88000-537500  650.0 363.3 336.7 Centipede  39737-251961 12862.8 8514.3
Phoenix 22410-27570  24.0 389.3 656.3 Phoenix 22410-27570  542.00 669.7
Space Invaders 845-2035 0.0 88.3 311.2 MsPacman 27731-36061 506.3 625.7

Enduro 278-742 0.0 0.0 3.2




Multimodal data sources: Facial Reactions

Implicit human feedback:

» Occurs naturally
* [s not necessarily intended to influence behavior

« (Can be used with no additional burden on user



EMPATHIC: Learning from implicit feedback — training

TIME LEFT

The EMPATHIC Framework for Task Learning from Implicit Human Feedback.

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox.

Conference on Robot Learning (CoRL), November 2020.


https://arxiv.org/abs/2009.13649

EMPATHIC: Learning from implicit feedback — deployment

Reward:0

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox.
The EMPATHIC Framework for Task Learning from Implicit Human Feedback.

Conference on Robot Learning (CoRL), November 2020.



https://arxiv.org/abs/2009.13649

