MODERN RL LANDSCAPE: PART I

Scott Niekum

Assistant Professor, Department of Computer Science The University of Texas at Austin

Personal Autonomous Robotics Lab

Distributional RL (Bellemare et al. 2017)

$Q(x, a) = \mathbb{E} R(x, a) + \gamma \mathbb{E} Q(X', A').$

VS.

$Z(x,a) \stackrel{D}{=} R(x,a) + \gamma Z(X',A').$

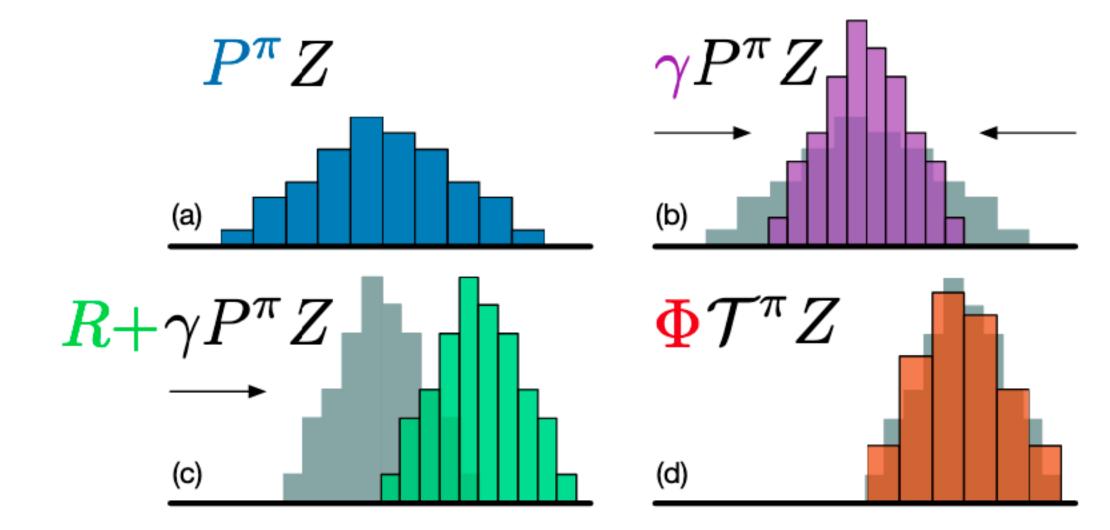


Figure 1. A distributional Bellman operator with a deterministic reward function: (a) Next state distribution under policy π , (b) Discounting shrinks the distribution towards 0, (c) The reward shifts it, and (d) Projection step (Section 4).

Distributional RL (Bellemare et al. 2017)

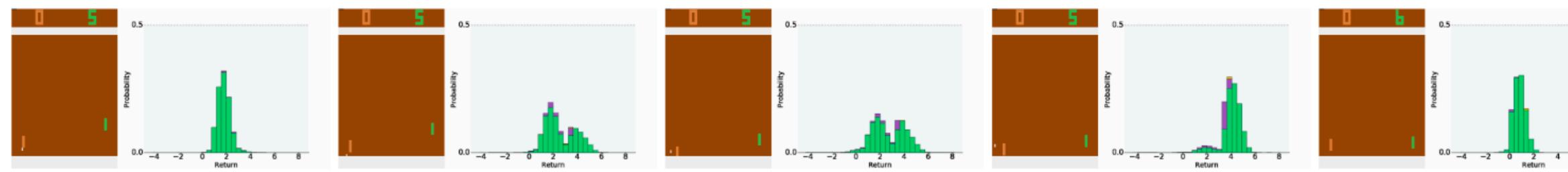
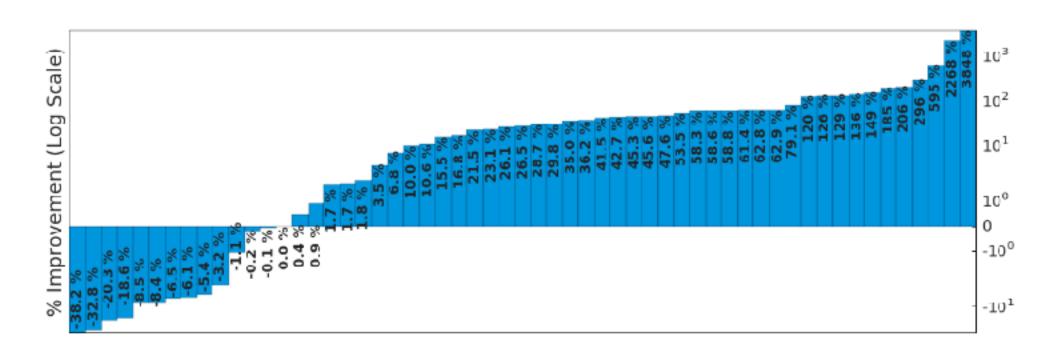


Figure 5. Intrinsic stochasticity in PONG.

	Mean	Median	> H.B.	>DQN
DQN	228%	79%	24	0
DDQN	307%	118%	33	43
DUEL.	373%	151%	37	50
PRIOR.	434%	124%	39	48
PR. DUEL.	592%	172%	39	44
C51	701%	178%	40	50
$UNREAL^\dagger$	880%	250%	-	_

Figure 6. Mean and median scores across 57 Atari games, measured as percentages of human baseline (H.B., Nair et al., 2015).



Distributional RL (Bellemare et al. 2017)

Figure 7. Percentage improvement, per-game, of C51 over Double DQN, computed using van Hasselt et al.'s method.

What is distributional RL doing? (Lyle et al. 2019)

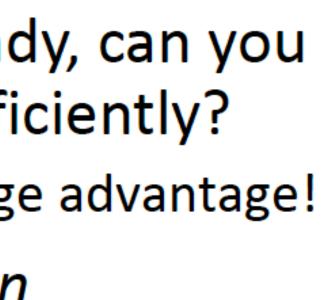
- Reduces chattering?
- Stabilizes updates, handles nonstationarity?
- Good auxiliary task?

What is distributional RL doing? (Lyle et al. 2019)

- Identical expectations computed in most tabular and linear approx cases
- And when predictions are different, actually hurts performance often!
- But usually helps with nonlinear function approximation (e.g. DNN)
- Good auxiliary task for representation learning /regularization?

What is meta-learning?

- If you've learned 100 tasks already, can you figure out how to *learn* more efficiently?
 - Now having multiple tasks is a huge advantage!
- Meta-learning = *learning to learn*
- In practice, very closely related to multi-task learning
- Many formulations
 - Learning an optimizer
 - Learning an RNN that ingests experience
 - Learning a representation



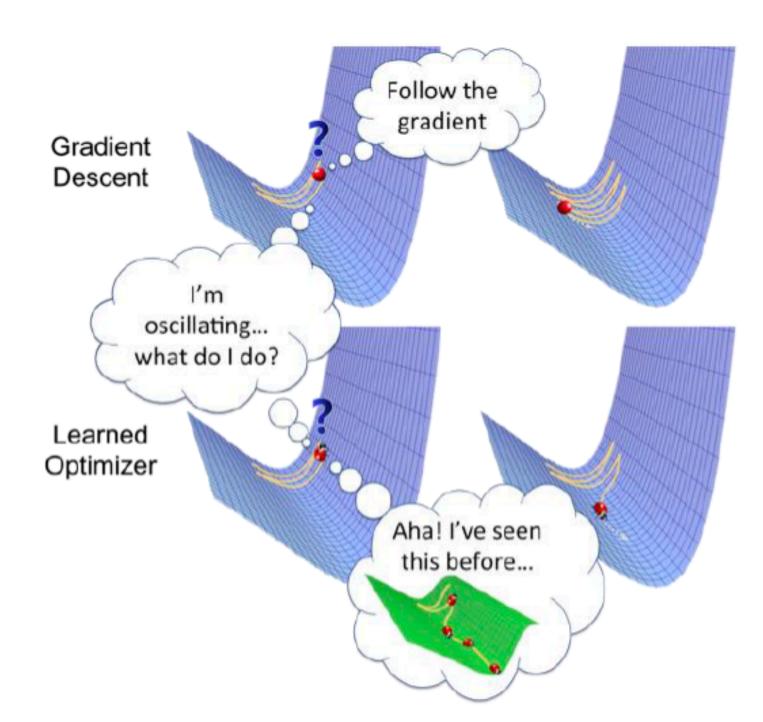


image credit: Ke Li

Why is meta-learning a good idea?

- Deep reinforcement learning, especially model-free, requires a huge number of samples
- If we can meta-learn a faster reinforcement learner, we can learn new tasks efficiently!
- What can a meta-learned learner do differently?
 - Explore more intelligently
 - Avoid trying actions that are know to be useless Acquire the right features more quickly

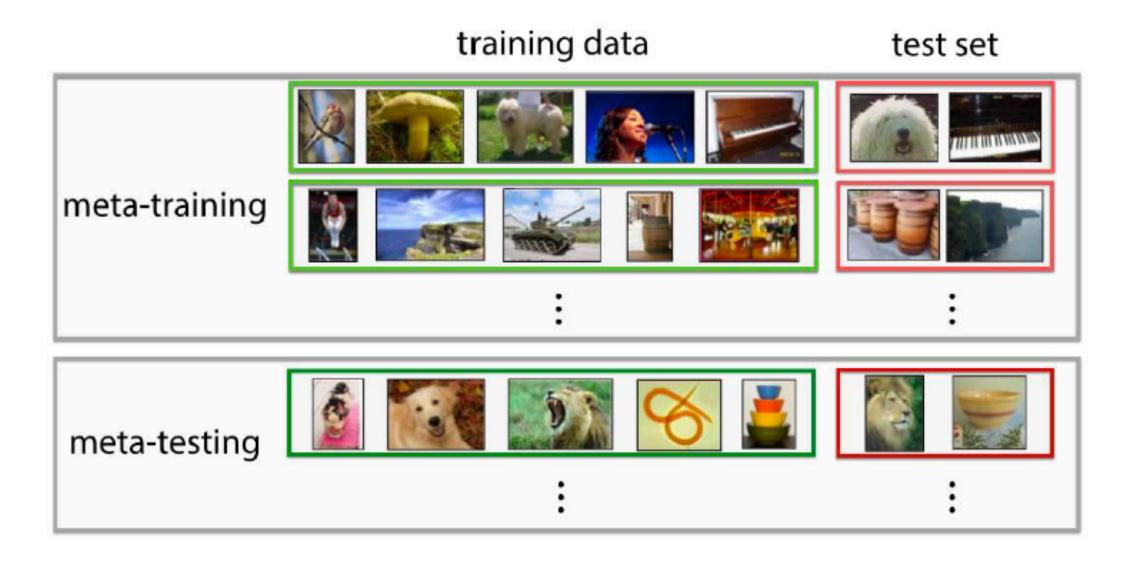
Meta-learning with supervised learning

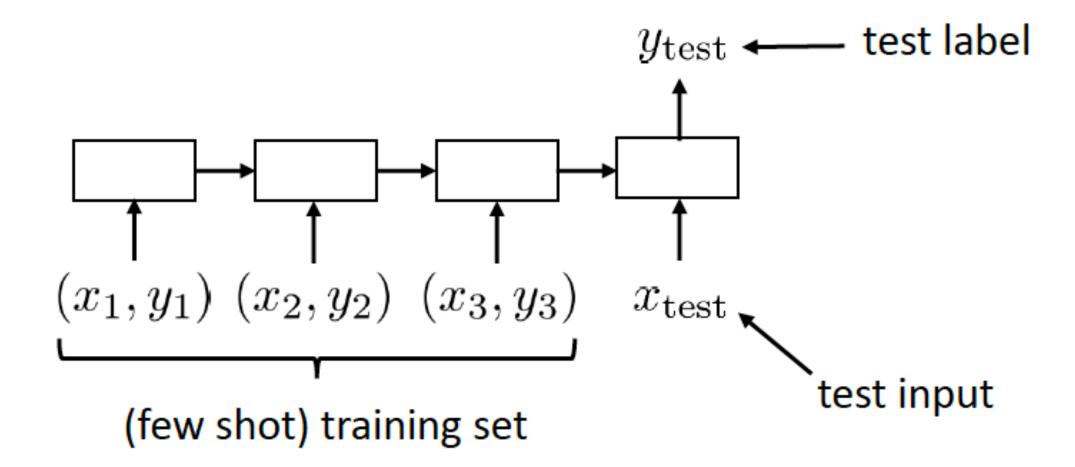
training data

image credit: Ravi & Larochelle '17

test set

Meta-learning with supervised learning





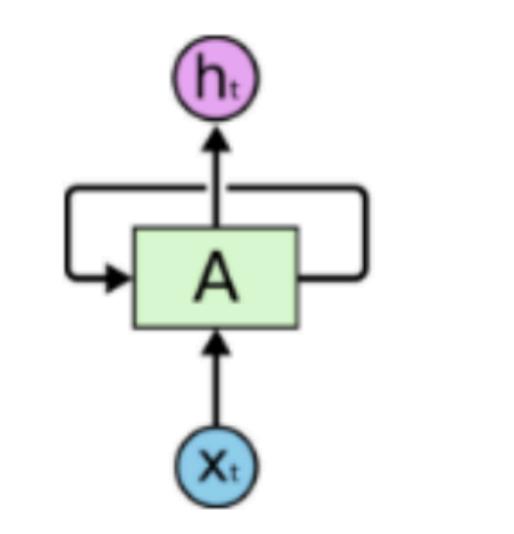
supervised learning:
$$f(x) \rightarrow y$$

 $f \qquad \uparrow$
input (e.g., image) output (e.g., label)

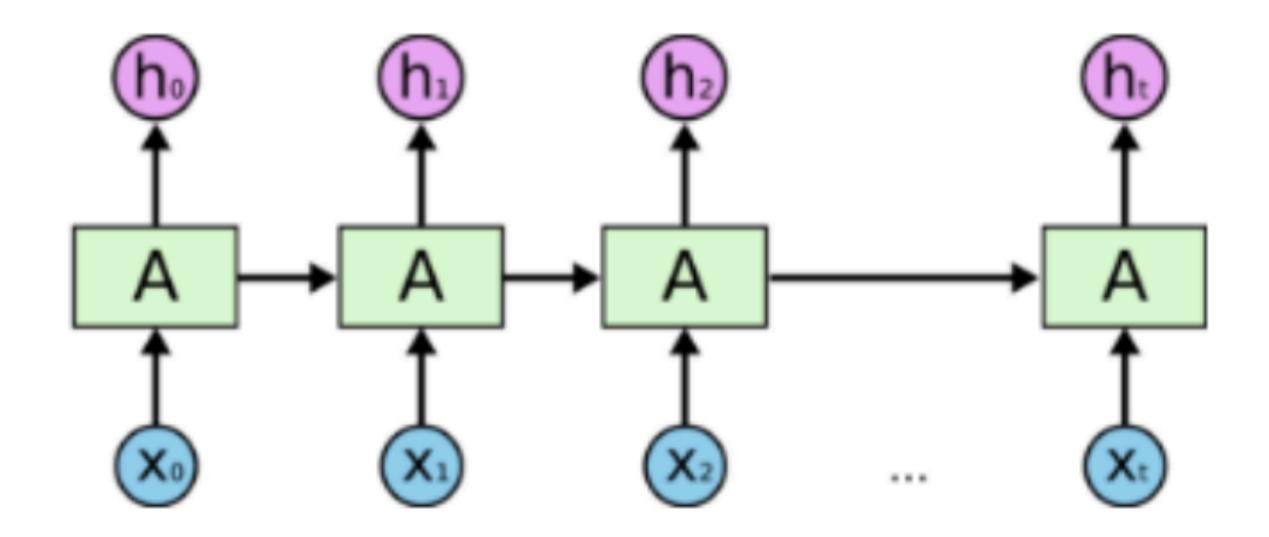
supervised meta-learning: $f(\mathcal{D}_{\text{train}}, x) \to y$ training set

- How to read in training set?
 - Many options, RNNs can work
 - More on this later

RNN-based meta-learning



=

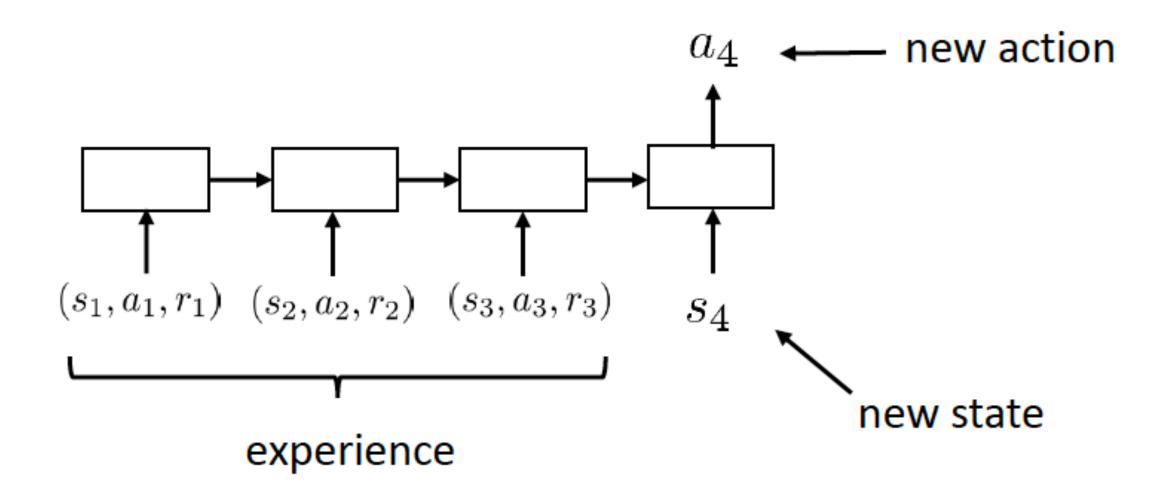


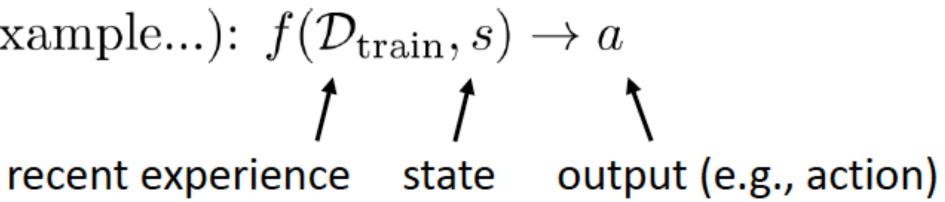
The meta-learning problem in RL

supervised meta-learning: $f(\mathcal{D}_{\text{train}}, x) \to y$

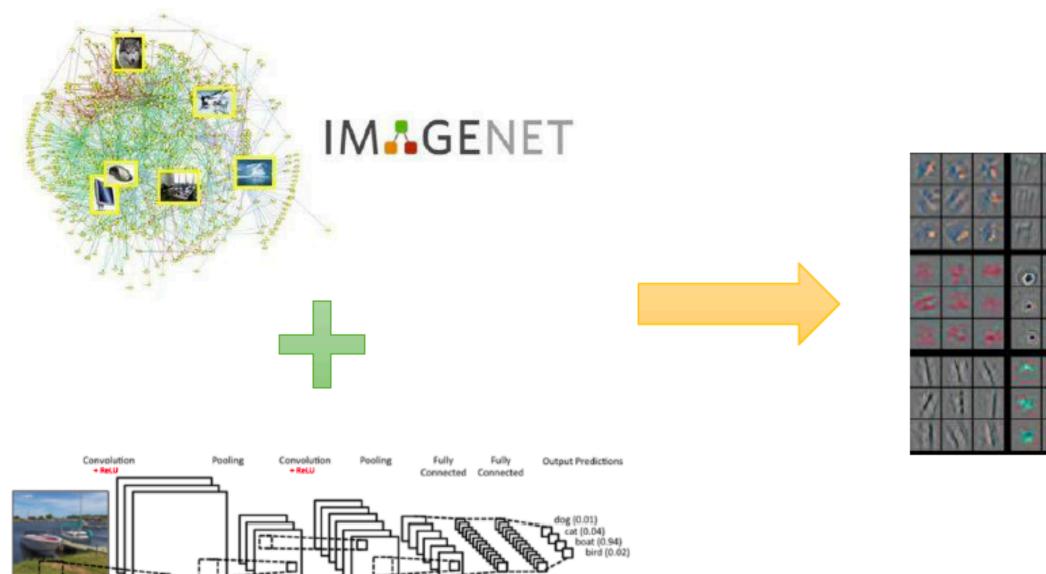
reinforcement meta-learning (for example...): $f(\mathcal{D}_{\text{train}}, s) \to a$

$$\mathcal{D}_{\text{train}} = \{s_1, a_1, r_1, \dots, a_N, s_N, r_N\}$$

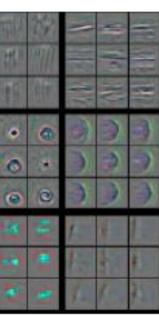


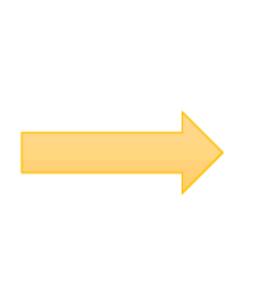


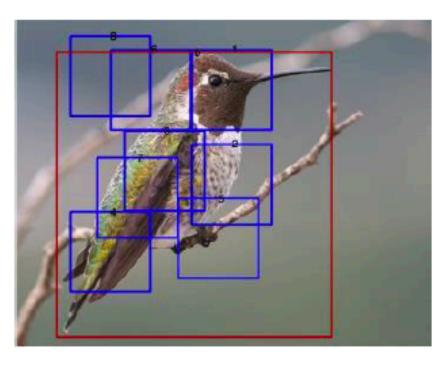
Back to representations...



is pretraining a *type* of meta-learning? better features = faster learning of new task!

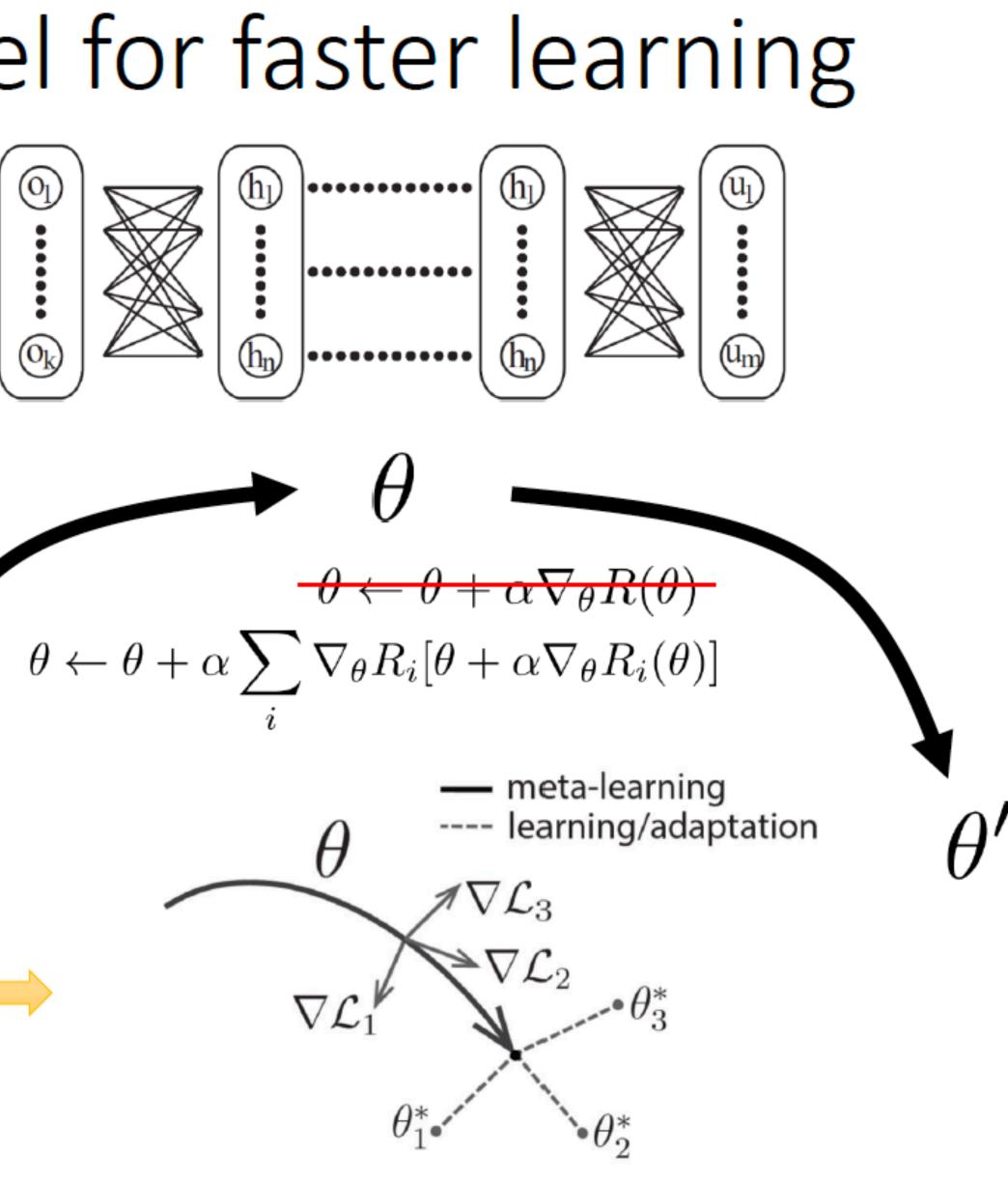






Preparing a model for faster learning (h)(0)••••• 0k (h_n)

Finn et al., "Model-Agnostic Meta-Learning"



Meta-learning summary & open problems

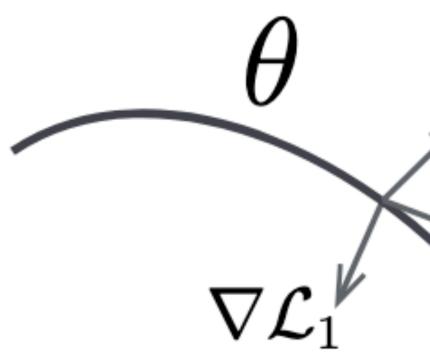
- Meta-learning = learning to learn
- Supervised meta-learning = supervised learning with datapoints that are entire datasets
- RL meta-learning with RNN policies
 - Ingest past experience with RNN
 - Simply run forward pass at test time to "learn"
 - Just contextual policies (no actual learning)
- Model-agnostic meta-learning
 - Use gradient descent (e.g., policy gradient) learning rule
 - Conceptually not that different

...but can accelerate standard RL algorithms (e.g., learn in one iteration of PG)

Meta-learning summary & open problems

- The promise of meta-learning: use past experience to simply acquire a much more efficient deep RL algorithm
- The reality of meta-learning: mostly works well on smaller problems
- ...but getting better all the time
- Main limitations
 - RNN policies are extremely hard to train, and likely not scalable
 - Model-agnostic meta-learning presents a tough optimization problem
 - Designing the right task distribution is hard
 - Generally very sensitive to task distribution (meta-overfitting)

Why not just initialize parameters to those that give the best average performance across tasks?



 θ^*

quickly adapt to new tasks.

- meta-learning ---- learning/adaptation
- $abla \mathcal{L}_3$

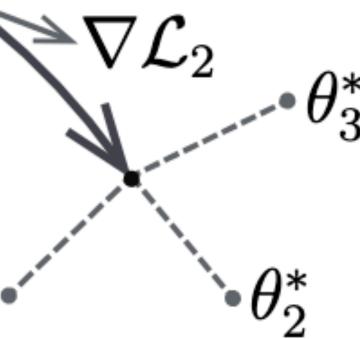


Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can

Isn't MAML just parameter initialization?

No! Surprisingly, MAML is universal: it can learn any update rule, in principle

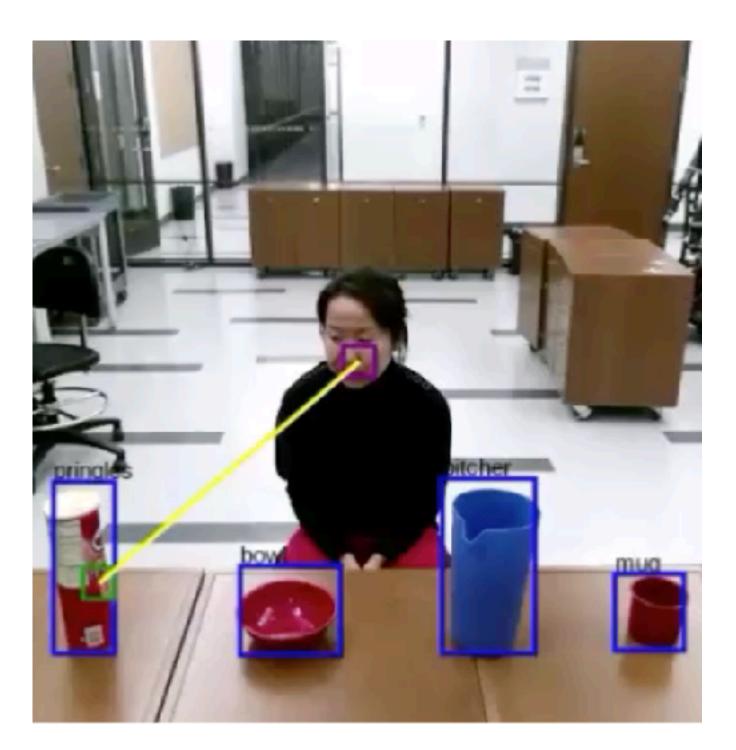
Leveraging auxiliary data sources and multiple data modalities for increased efficiency

Auxiliary video alignment

W. Goo and S. Niekum. **One Shot Learning of Multi-Step Tasks from Observation** via Activity Localization in Auxiliary Video **International Conference on Robotics and Automation, May 2019.**

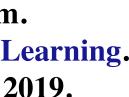
P. Goyal, S. Niekum, and R. Mooney. **Using Natural Language for Reward Shaping in RL International Joint Conference on AI, August 2019.**

Natural language narration

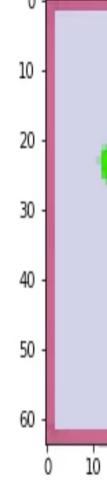


Gaze and facial expressions

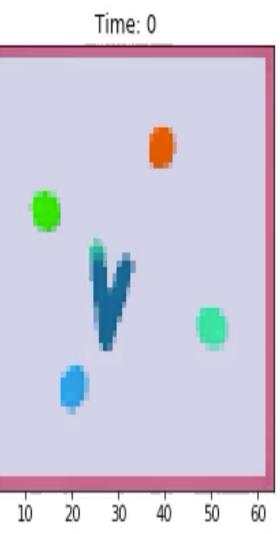
A. Saran, E.S. Short, A.L. Thomaz, and S. Niekum. **Understanding Teacher Gaze Patterns for Robot Learning. Conference on Robot Learning (CoRL), October 2019.**



Colored Target Reaching Task

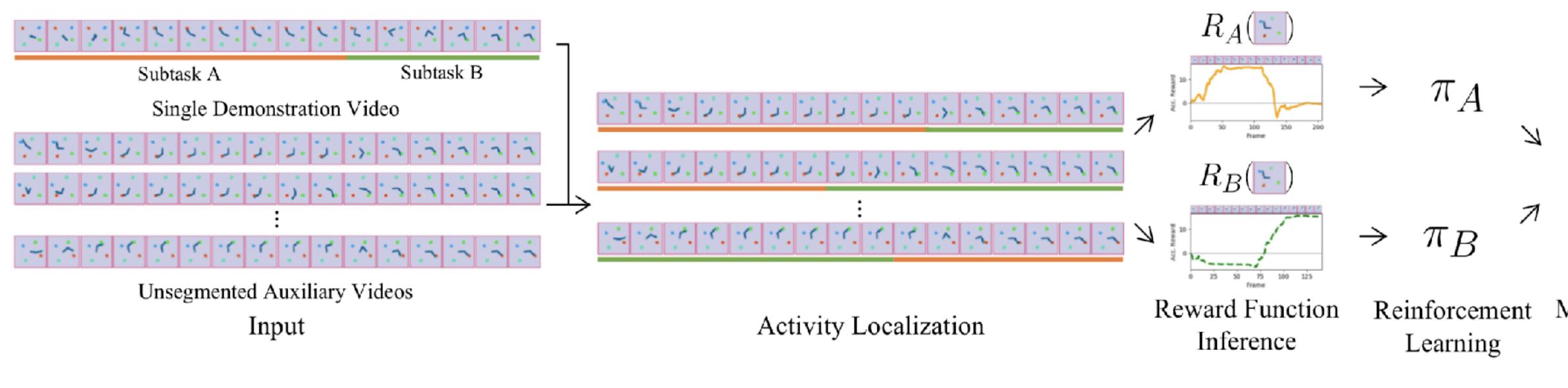


Subtask A: Reaching to an orange target



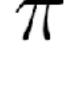
Subtask B: Reaching to a green target

One-Shot Learning from Observation for Multi-Step Tasks **via Activity Localization in Auxiliary Video**



Meta-learn a low-shot activity classifier

...then perform IRL



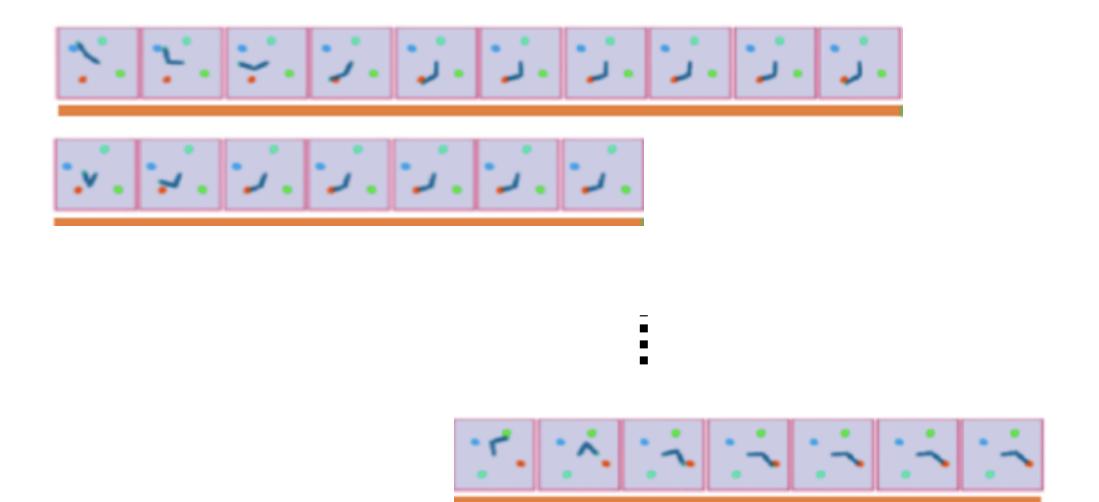
au_1 ; target orange and green au_2 ; target blue and yellow

Meta-Training dataset; videos with preselected 36 target colors, 100 videos per each task

 \mathcal{T}_n ; target purple and red

Learning from Observation (LfO) -Approach

• Learning a notion of *progress* • Shuffle-and-Learn loss



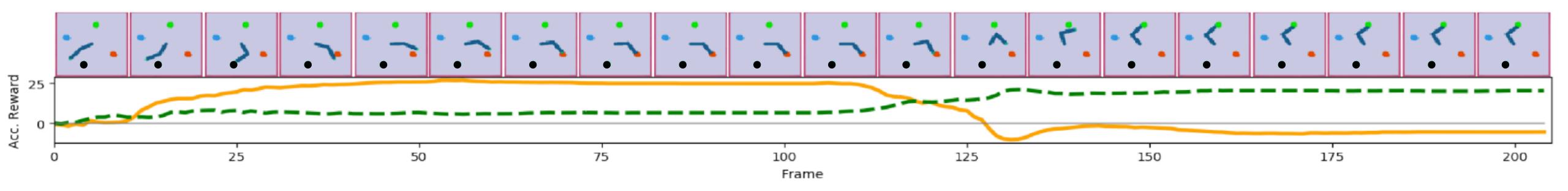
Are the frames in order?

$g(\square, \square) = 1; \text{ in order}$ $q(\square) = 0; \text{ out of order}$

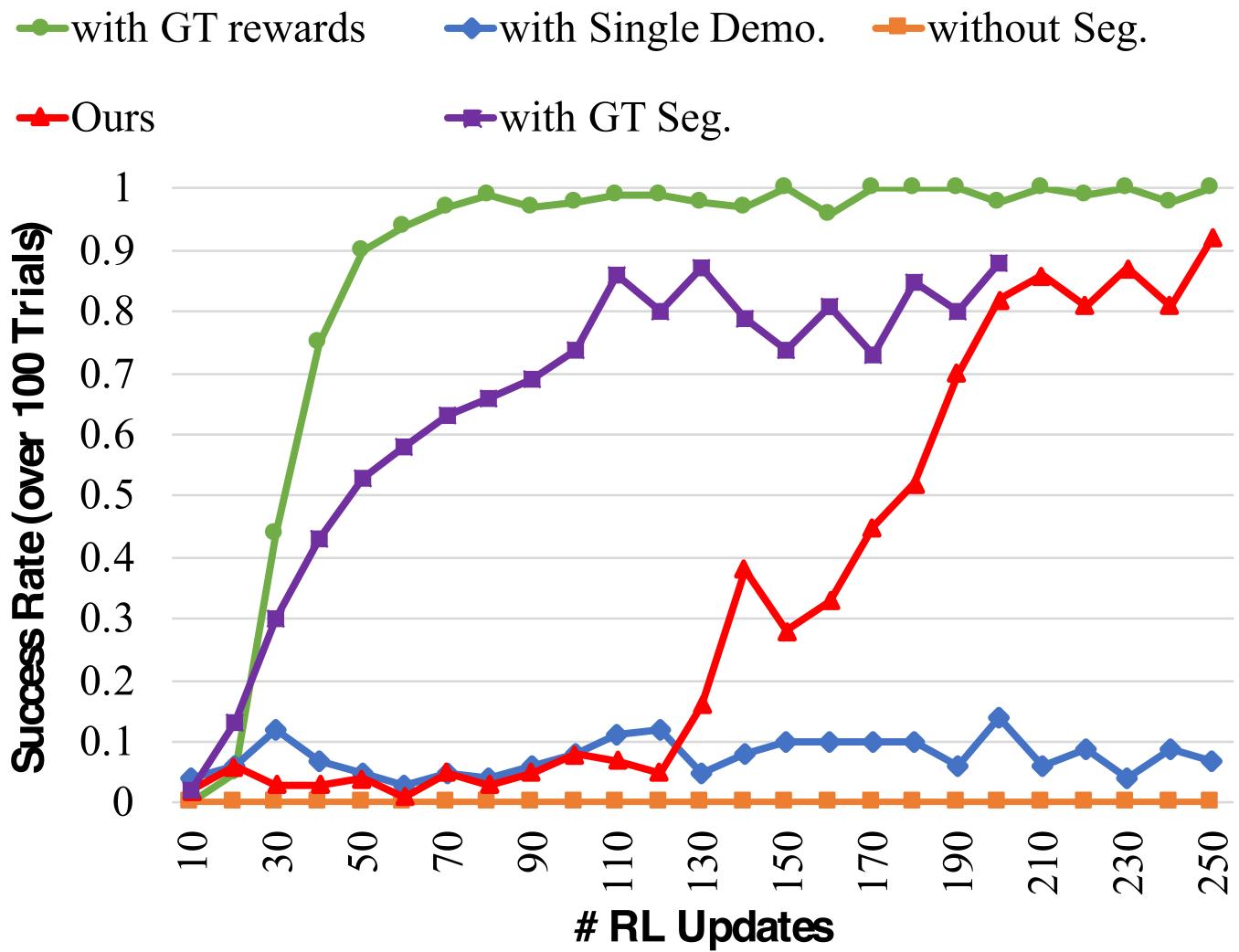
For all possible pairs,

 $Loss = L_{ce}(sigmoid(g(o_t, o_{t'})), 1(t < t')),$

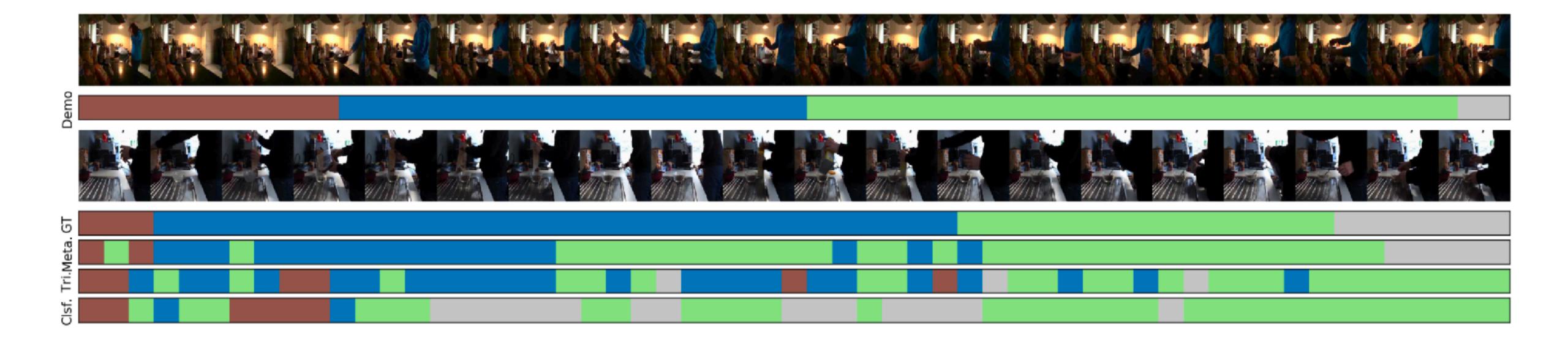
Learning from Observation (LfO) - Result



Result - the whole pipeline



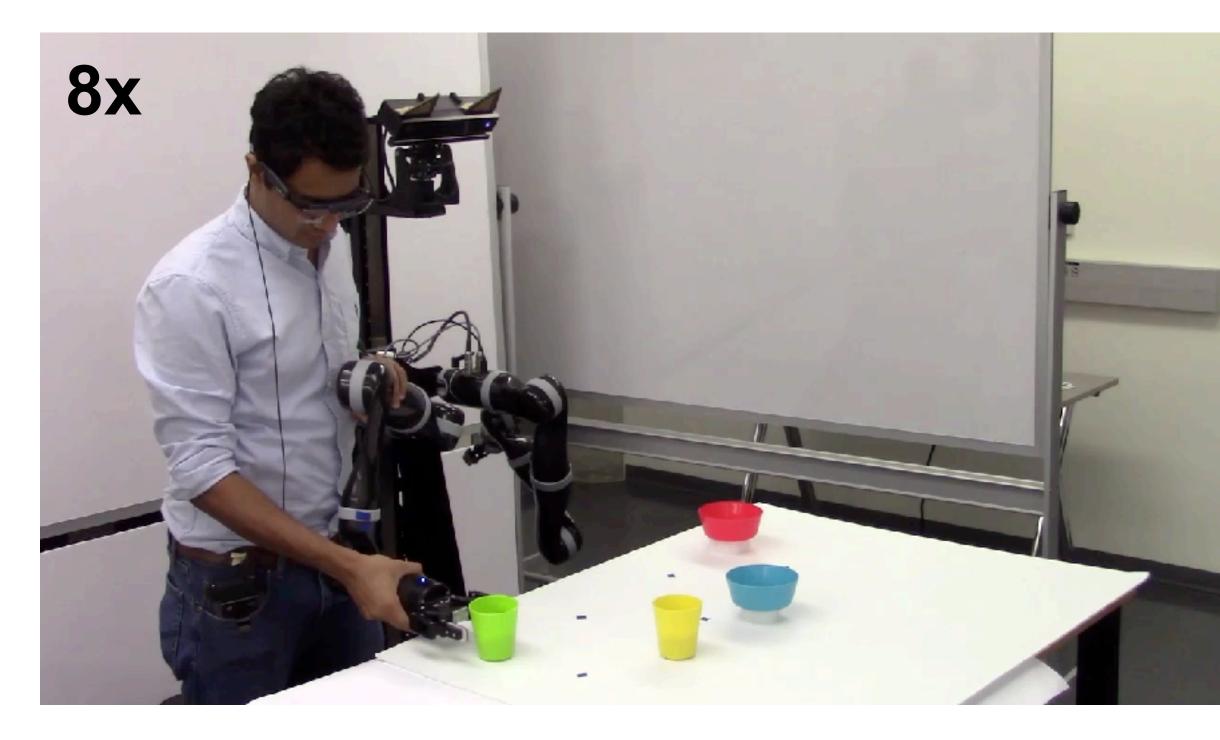
Results - Breakfast dataset



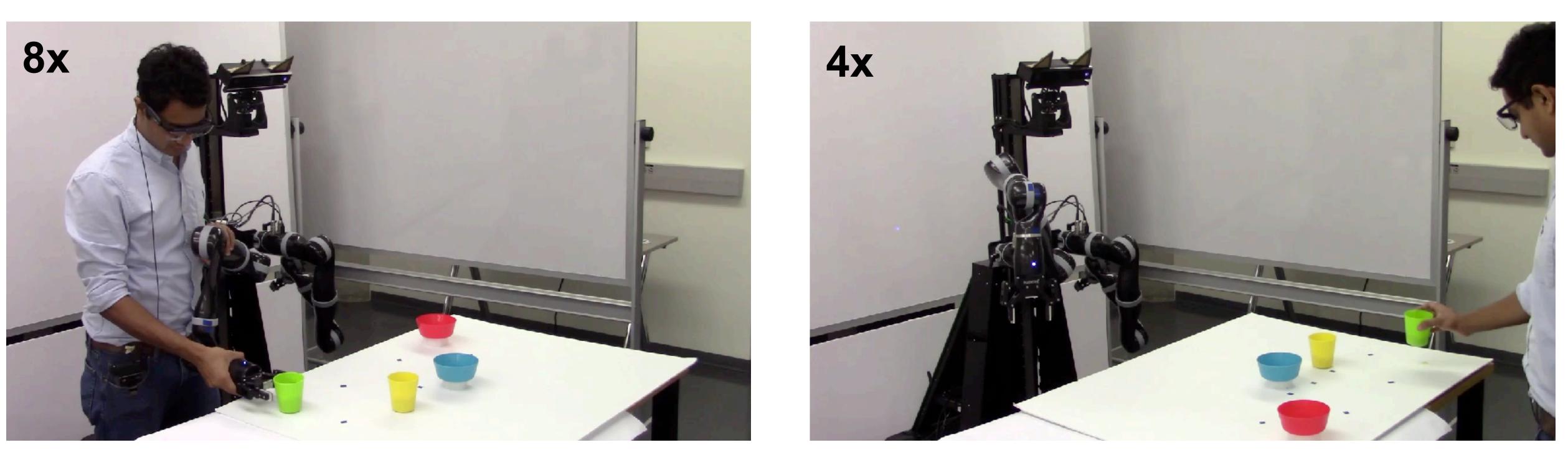
Gaze – a signal of Human Intent

Gaze Patterns in Human Demonstrations for Robots

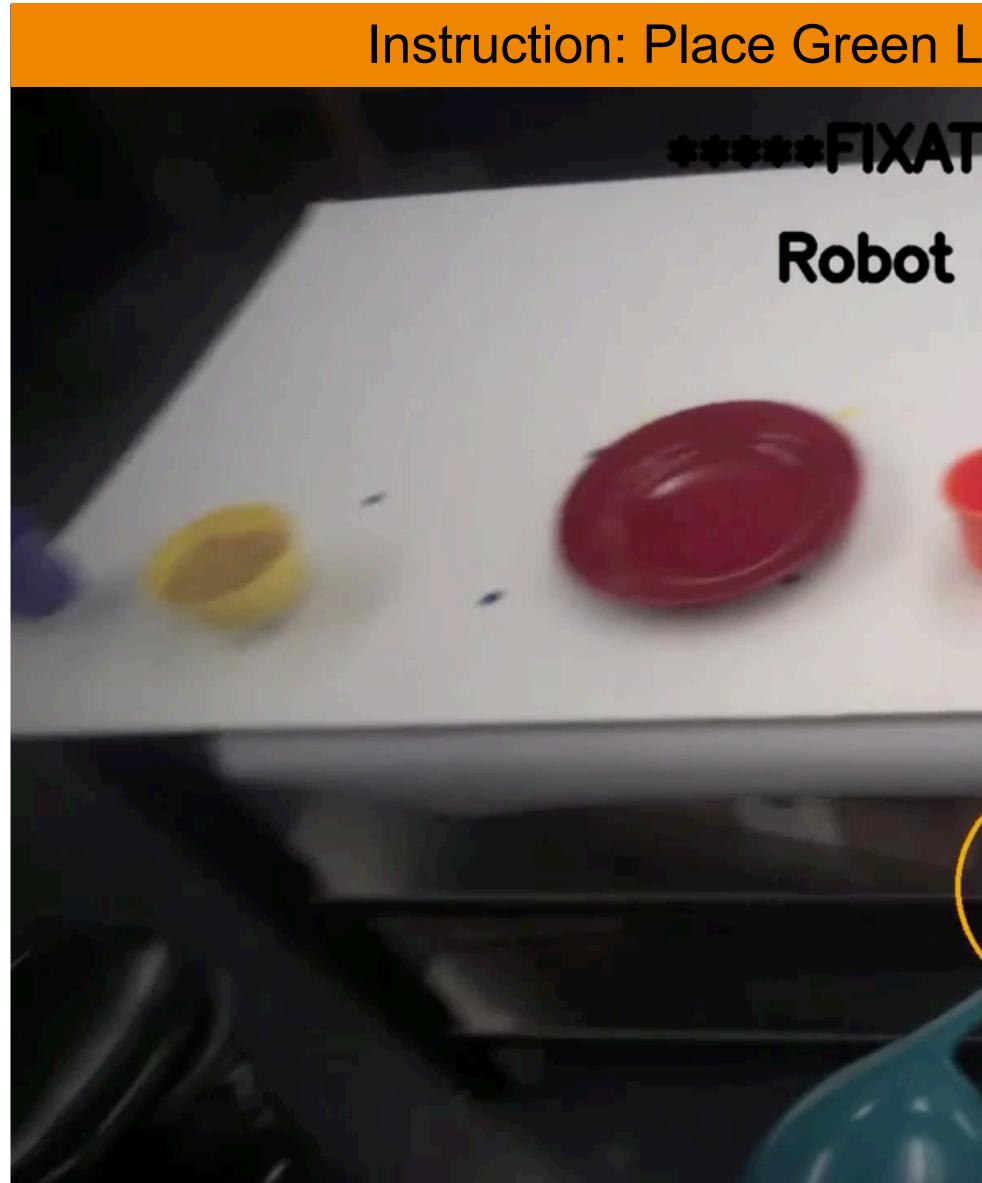
Keyframe-based Kinesthetic Teaching (KT)



Observational/Video Demonstrations



Gaze Fixations during Ambiguous Placement Demonstrations



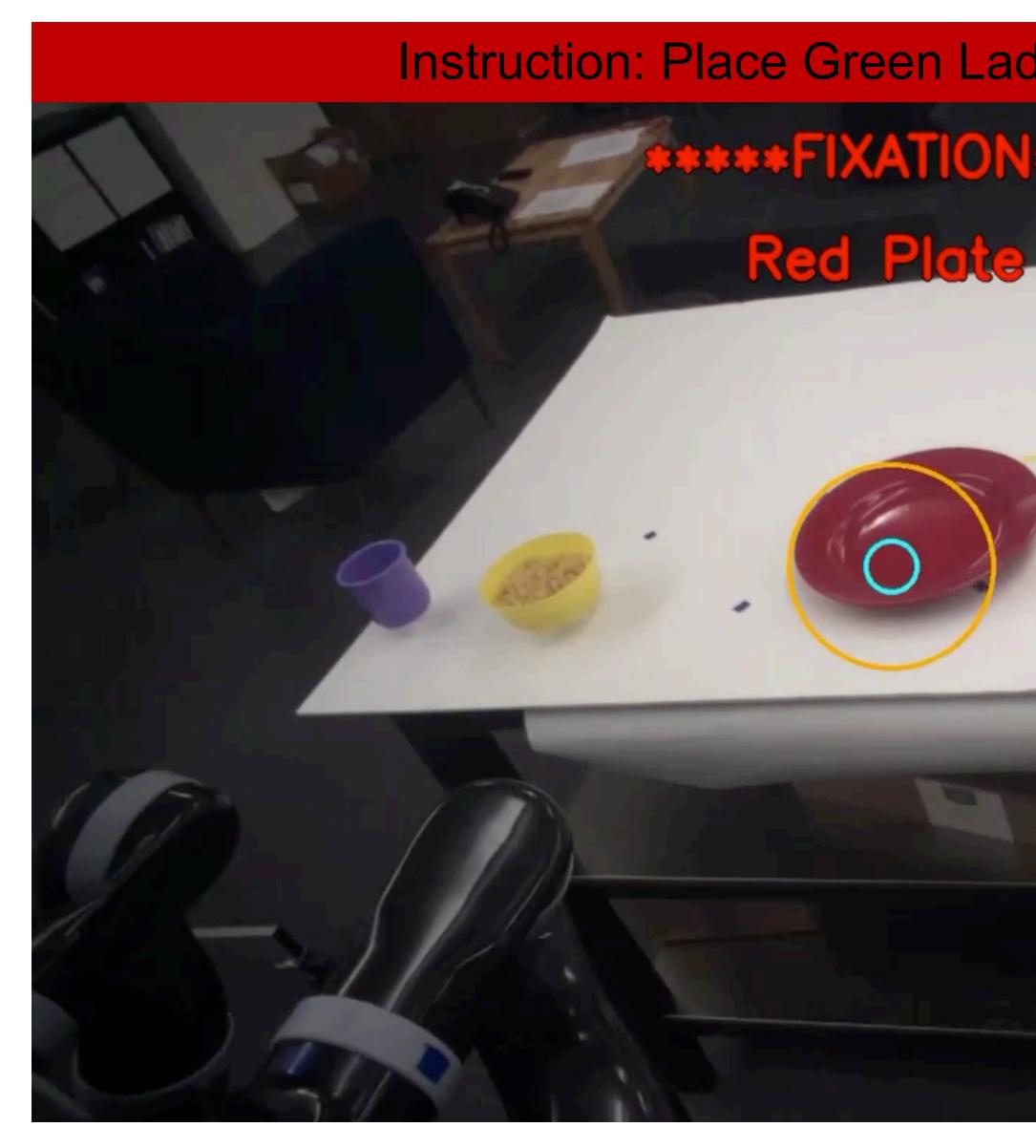
Instruction: Place Green Ladle to the right of Yellow Bowl

XATION****

Robot Gripper

More fixations on the yellow bowl

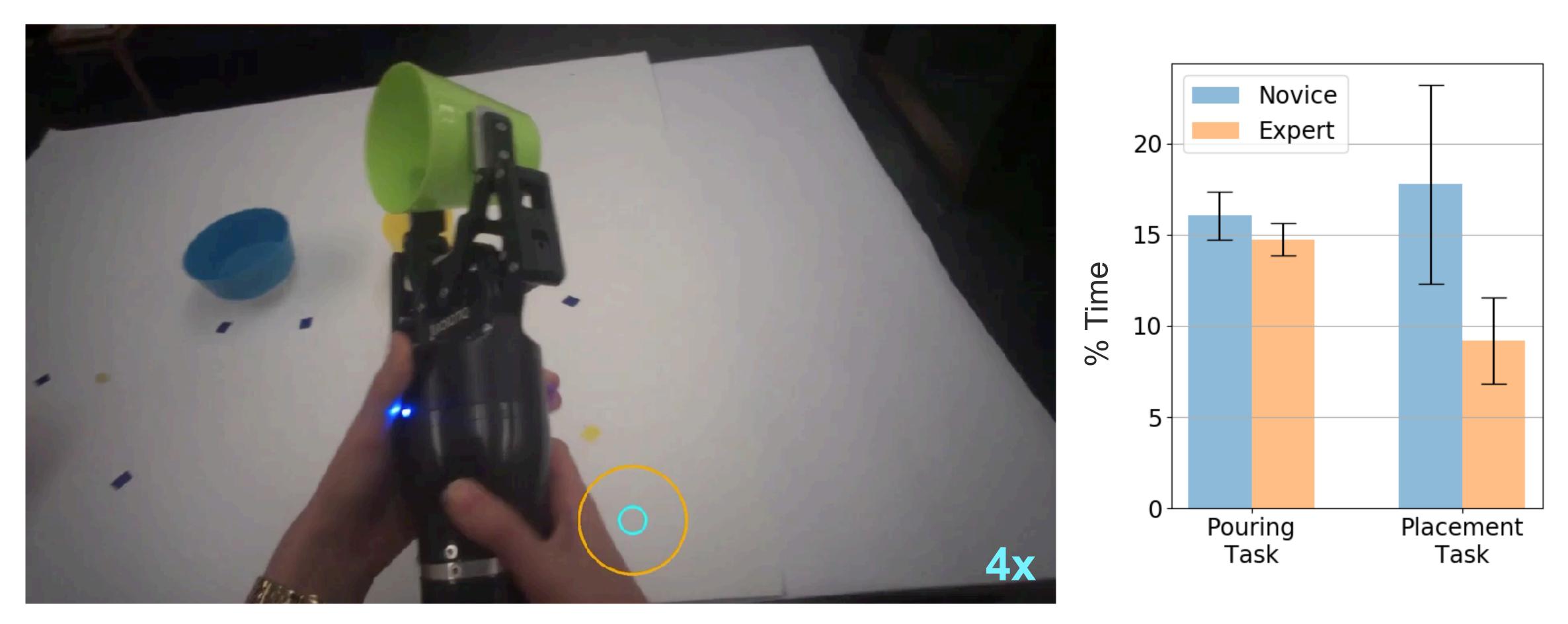
Gaze Fixations during Ambiguous Placement Demonstrations



Instruction: Place Green Ladle to the left of Red Plate ****FIXATION****

More fixations on the red plate

Kinesthetic Demos: Novice Users focus more on the Robot's Gripper



Reward Learning for the Placement Task

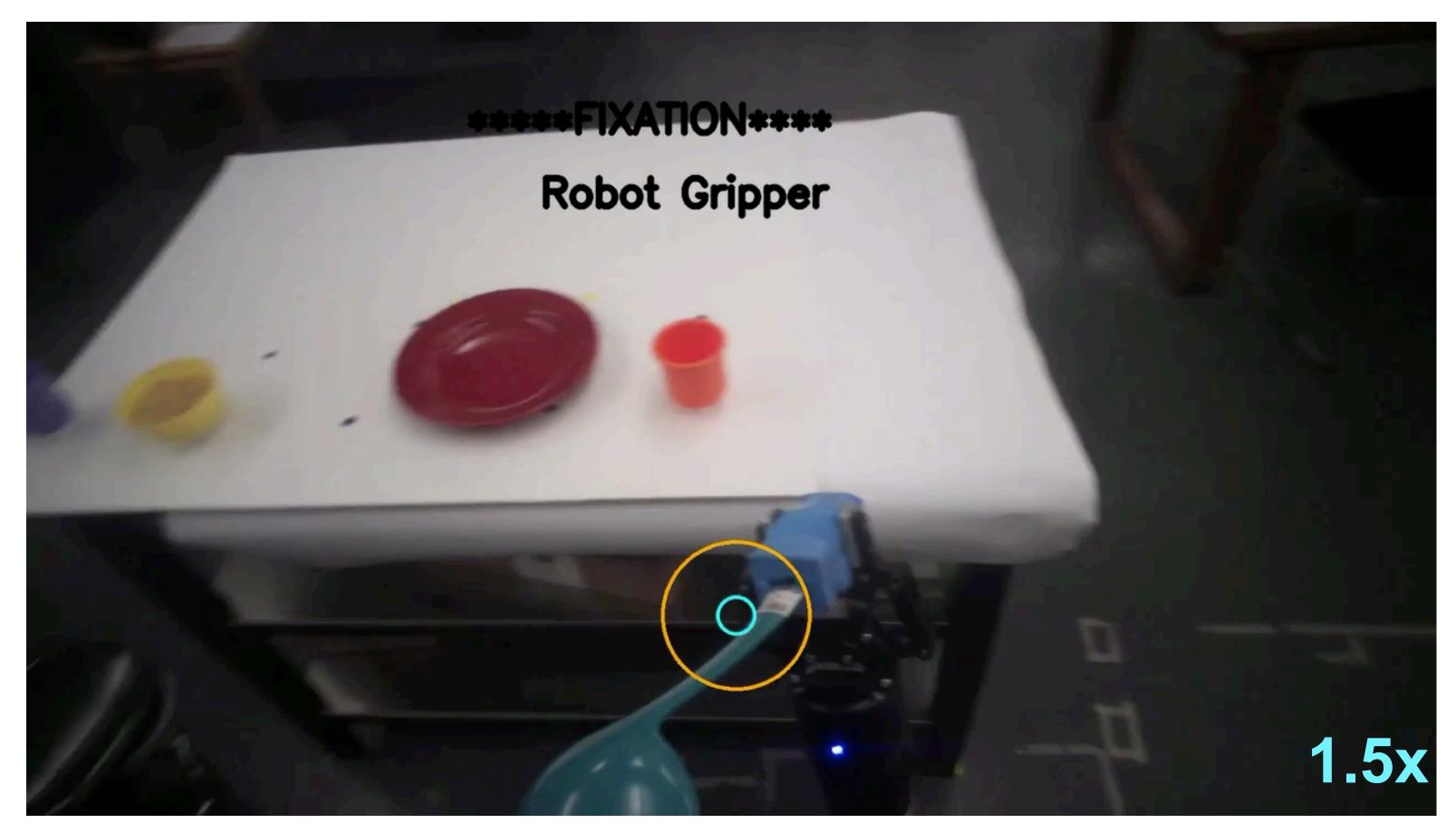
Gaze augmented Bayesian IRL for Placement Task $P(R|D,G) \propto P(D|R)P(R|G)$

> Penalize reward functions for which pairwise gaze fixation times are not ranked according to corresponding **object weights**

Reward functions modeled as weighted RBF kernels near objects

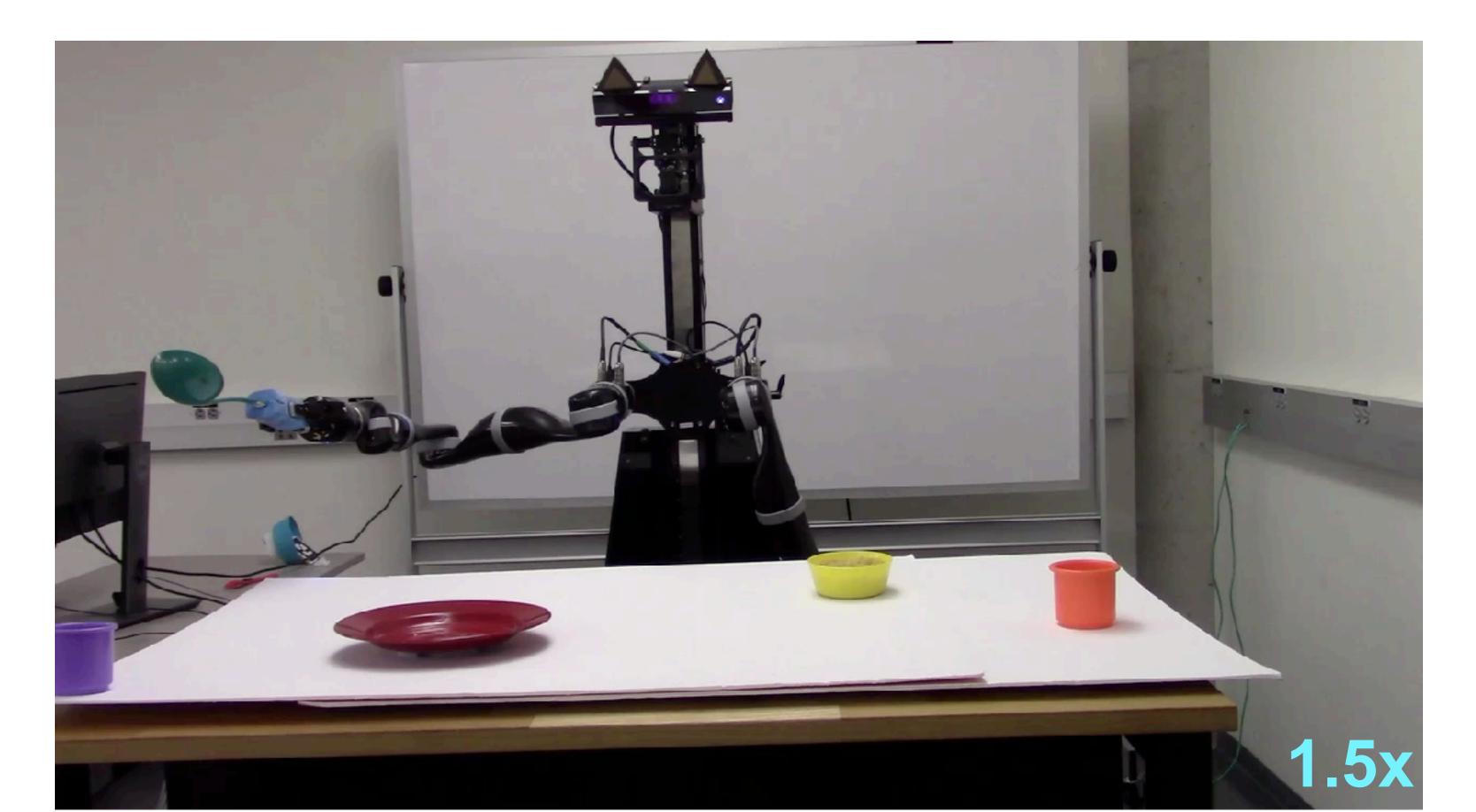
Bayesian IRL using Gaze from Ambiguous Demonstrations

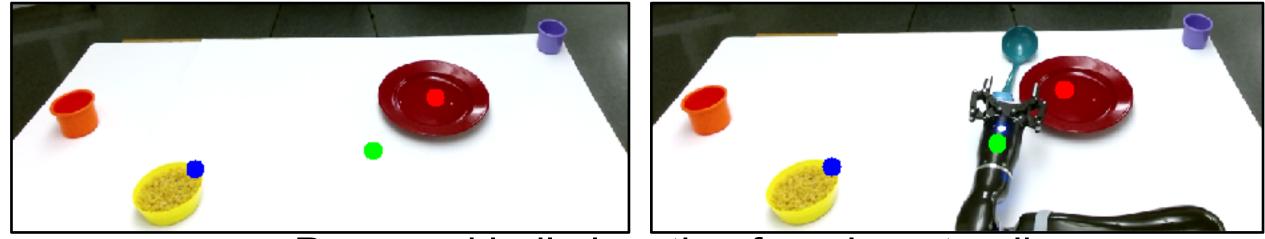
"Place green ladle to the **right of the yellow bowl**"



DEMONSTRATION

BIRL without Gaze Information

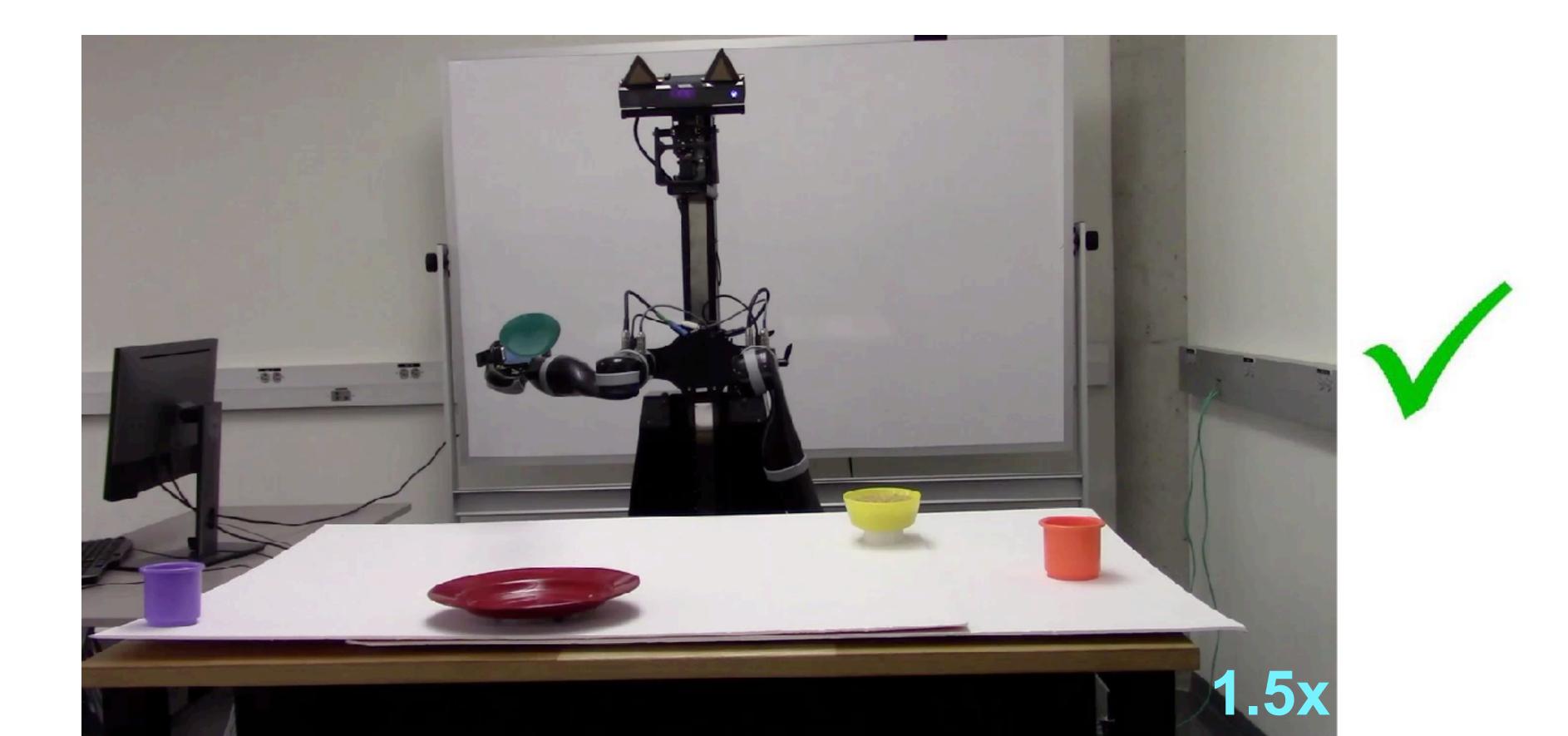


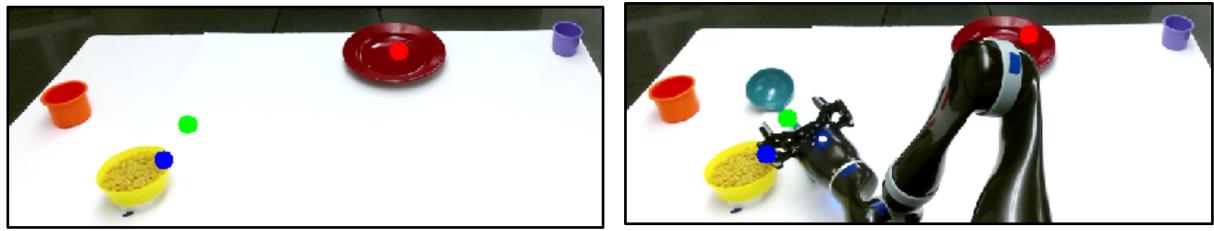


Proposed ladle location from learnt policy



BIRL with Gaze Information

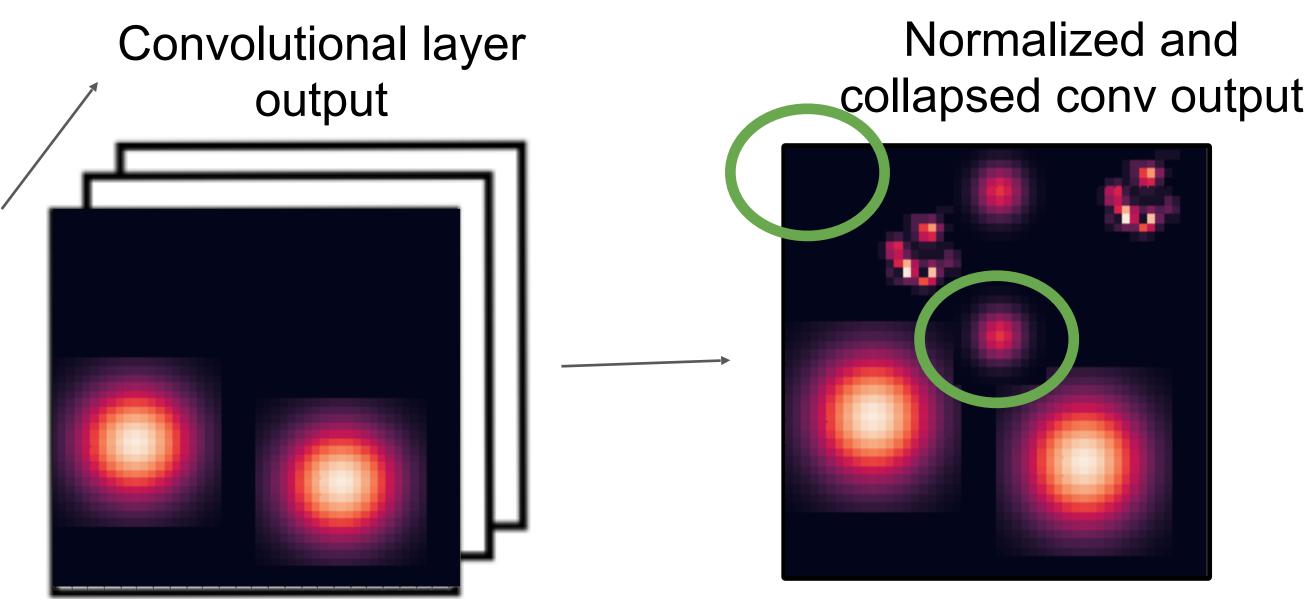




Proposed ladle location from learnt policy

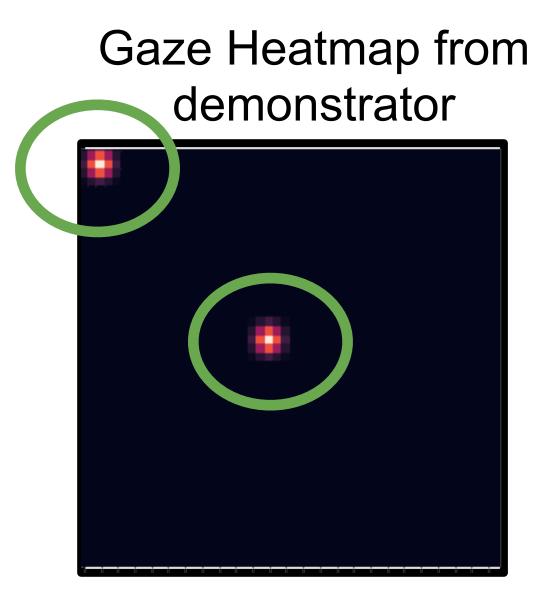
Coverage-based Gaze Loss (CGL)

- Only required during training as part of an auxiliary loss function
- layers
- Improved performance without varying model complexity

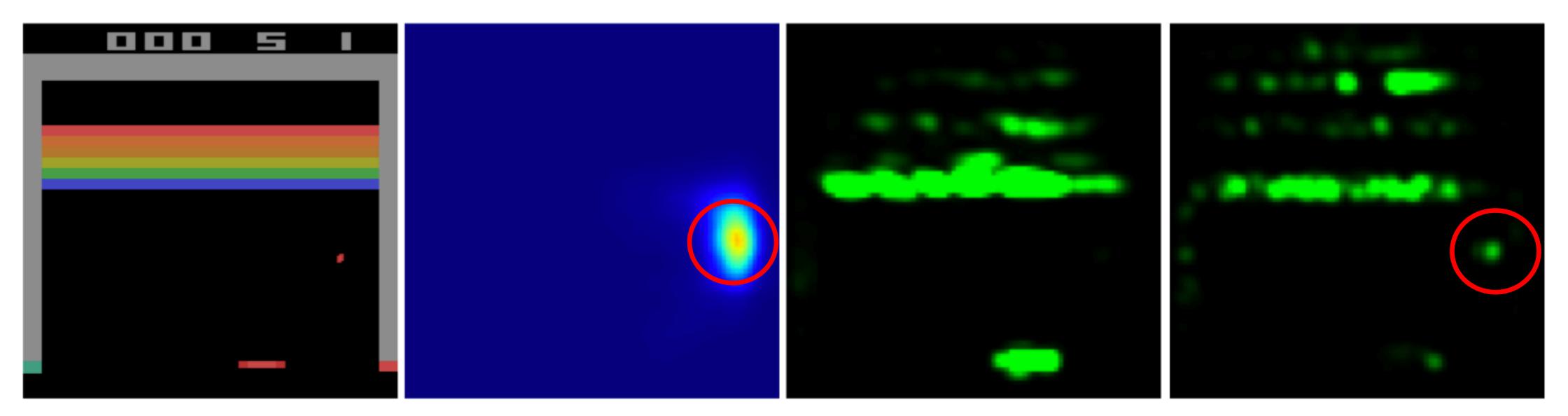


Intuition: Add a penalty for regions where gaze fixations are non-zero, but are not attended to by convolutional layers

Can be applied to any existing Imitation Learning network with convolutional



CGL: Coverage-based Gaze Loss



(a) Input image (b) Human

A. Saran, R. Zhang, E.S. Short, and S. Niekum. <u>Efficiently Guiding Imitation Learning Algorithms with Human Gaze</u>. International Conference on Autonomous Agents and Multiagent Systems (AAMAS), May 2021.

(c) T-REX (d) T-REX+CGL

Table 1: BCO performance with and without the usage of human demonstrators' gaze

Game	Human	BCO	BCO+GMD	BCO+CGL
Breakout	344 - 554	0.2	0.0	0.6
Hero	34305 - 50485	0.0	0.0	1469.0
MsPacman	17441 - 92610	90.0	70.0	210.0
Asterix	88000-537500	650.0	363.3	336.7
Phoenix	22410-27570	24.0	389.3	656.3
Space Invaders	845-2035	0.0	88.3	311.2
Enduro	278-742	0.0	0.0	3.2

BCO and T-REX + Gaze

Table 2: T-REX performance with and without the usage of expert human demonstrators' gaze

Game	Human	T-REX	T-REX+CGI
Asterix Centipede	88000-537500 39737-251961	23926.7 12862.8	99468.3 8514.3
Phoenix	22410-27570	542.00	669.7
MsPacman	27731-36061	596.3	625.7

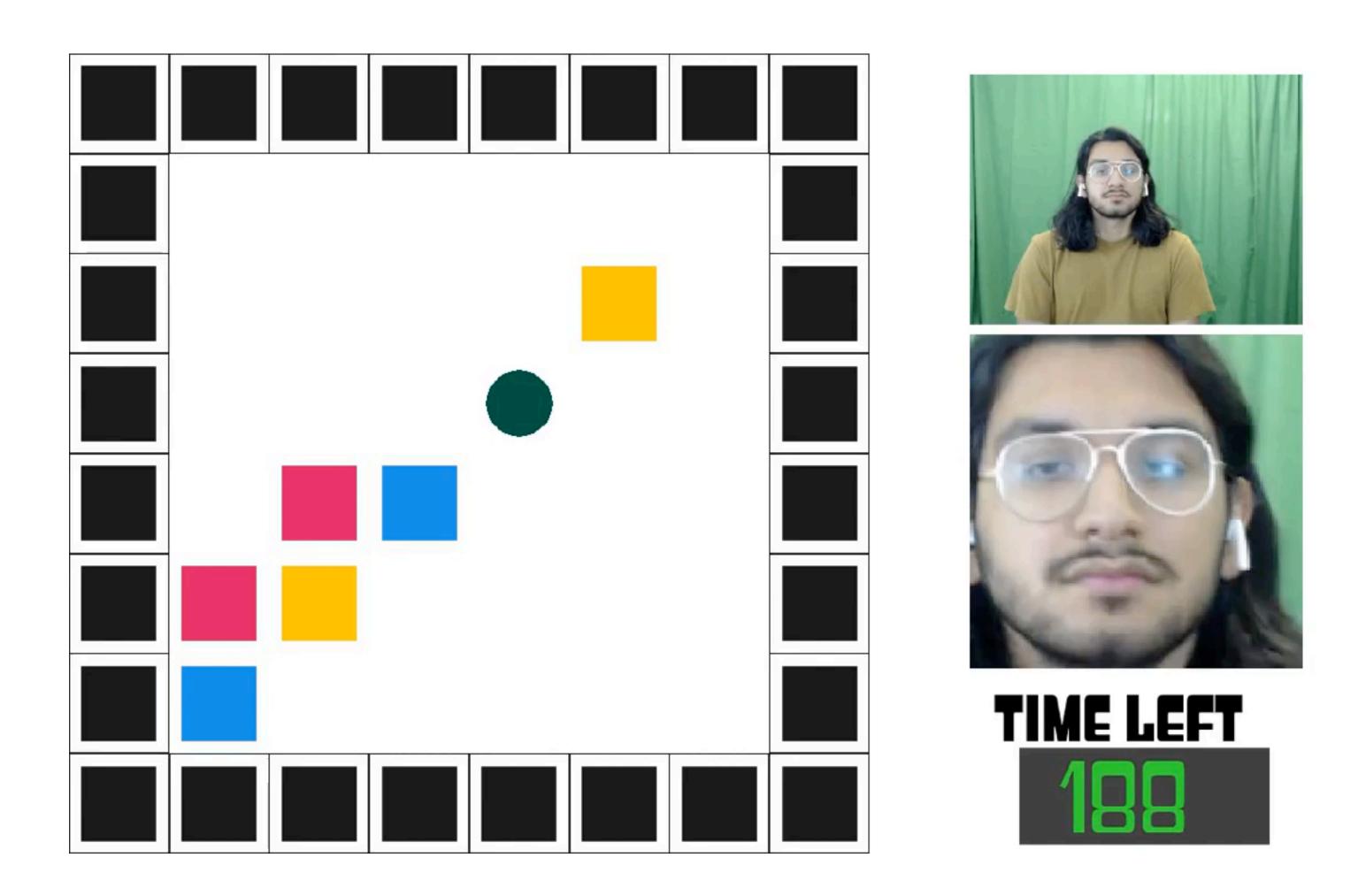
Multimodal data sources: Facial Reactions

Implicit human feedback:

- Occurs naturally

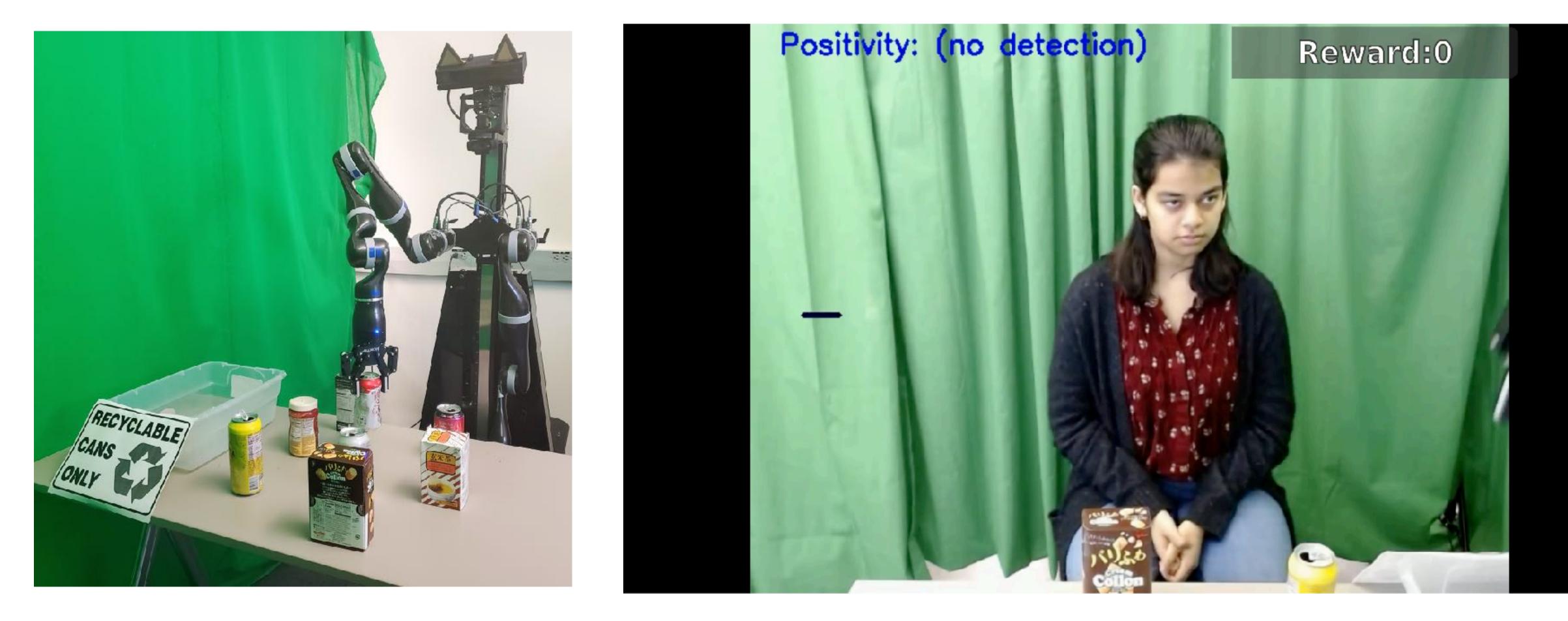
• Is not necessarily intended to influence behavior • Can be used with no additional burden on user

EMPATHIC: Learning from implicit feedback — training



Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. <u>The EMPATHIC Framework for Task Learning from Implicit Human Feedback</u>. Conference on Robot Learning (CoRL), November 2020.

EMPATHIC: Learning from implicit feedback — deployment



Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. <u>The EMPATHIC Framework for Task Learning from Implicit Human Feedback</u>. Conference on Robot Learning (CoRL), November 2020.

