

Christopher Mutschler

Policy Gradients so far

Policy Gradients so far

Problem

- Run gradient descent/ascent on one batch of collected experience
- Note: the advantage function (which is a noisy estimate) may not be accurate
 - Too large steps may lead to a disaster (even if the gradient is correct)
 - Too small steps are also bad
- Definition and scheduling of learning rates in RL is tricky as the underlying data distribution changes with updates to the policy
 - Mathematical formulization:
 - First-order derivatives approximate the (parameter) surface to be flat
 - But if the surface exhibits high curvature it gets dangerous
 - Projection: small changes in parameter space might lead to large changes in policy space!
- Parameters θ get updated to areas too far out of the range from where previous data was collected (note: a bad policy leads to bad data)

Images taken from https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9 and http://www.taiwanoffthebeatentrack.com/2012/08/23/mount-hua-华山-the-most-dangerous-hike-in-the-world/

"Simple" Idea

Regularize updates to the policy parameters, such that the policy does not change too much.

Motivation: Why trust region optimization?

Trust region

Image credit: <u>https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9</u>

Primer: Trust-Region Methods

Optimization in Machine Learning: two classes

- 1. Line Search, e.g., gradient descent
 - find a (some) direction of improvement
 - (cleverly) select a step length

- 2. Trust-Region Methods
 - select a trust region (analog to max step length)
 - find a point of improvement in that region

Primer: Trust-Region Methods

• Idea:

- Approximate the real objective f with something simpler, i.e., \tilde{f}
- Solve $\tilde{x}^* = \arg\min_{x} \tilde{f}(x)$
- Problem:
 - The optimum \tilde{x}^* might be in a region where \tilde{f} poorly approximates f
 - \tilde{x}^* might be far from optimal
- Solution:
 - Restrict the search to a region tr where we trust \tilde{f} to approximate f well
 - Solve $\tilde{x}^* = \arg\min_{x \in tr} \tilde{f}(x)$

So back to what we actually do...

The problem(s) of the Policy Gradient (PG) is that

- PG keeps old and new policy close in parameter space, while
- small changes can lead to large differences in performance, and
- "large" step-sizes hurt performance (whatever "large" means...)

Non-stationary input data due to changing policy and reward distribution change

Trust-Region Policy Optimization

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π :

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot | s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

- We collect data with π_{old} and optimize to get a new policy π_{new}
- Let's express $\eta(\pi_{new})$ in terms of advantage over the original policy¹:

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π :

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot | s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

• We collect data with π_{old} and optimize to get a new policy π_{new}

1

• Let's express $\eta(\pi_{new})$ in terms of advantage over the original policy¹:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{\tau \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$
$$= \eta(\pi_{old}) + \sum_s \rho_{\pi_{new}}(s) \sum_a \pi_{new}(a|s) A_{\pi_{old}}(s, a)$$
$$\square$$
Discounted visitation frequency according to new policy:
$$\rho_{\pi_{new}}(s) = P(s_0 = s) + \gamma P(s_1 = s) + \gamma^2 P(s_2 = s) + \cdots$$

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π :

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot | s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

- We collect data with π_{old} and optimize to get a new policy π_{new}
- Let's express $\eta(\pi_{new})$ in terms of advantage over the original policy:

→ New objective guarantees improvement from $\pi_{old} \rightarrow \pi_{new}$

Trust-Region Policy Optimization

• We want to optimize $\eta(\pi)$, i.e., the expected return of policy π :

$$\eta(\pi) = \mathbb{E}_{s_0 \sim \rho_0, a^t \sim \pi_{old}(\cdot | s_t)} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

- We collect data with π_{old} and optimize to get a new policy π_{new}
- Let's express $\eta(\pi_{new})$ in terms of advantage over the original policy:

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \mathbb{E}_{\tau \sim \pi_{new}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{old}}(s_t, a_t) \right]$$
$$= \eta(\pi_{old}) + \sum_{s} \rho_{\pi_{new}}(s) \sum_{a} \pi_{new}(a|s) A_{\pi_{old}}(s, a)$$

However, this cannot be easily estimated. The state visitations that we sampled so far are coming from the old policy!

\rightarrow we cannot optimize this in the current form!

$$\eta(\pi_{new}) = \eta(\pi_{old}) + \sum_{s} \rho_{\pi_{new}}(s) \sum_{a} \pi_{new}(a|s) A_{\pi_{old}}(s, a)$$

$$\approx L(\pi_{new}) = \eta(\pi_{old}) + \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi_{new}(a|s) A_{\pi_{old}}(s, a) \quad \longleftarrow \quad \text{This we already sampled}$$

$$\Rightarrow \text{ We already have this!}$$

- The approximation is accurate within step size δ (trust region)
 - δ needs to be chosen based on a lower-bound approximation error
- Monotonic improvement guaranteed
 - (within the green region!)

- If we want to optimize L(θ_{new}) instead of η(θ_{new}) ...
 with a guarantee of monotonic improvement on η(θ_{new}), ...
 ... we need a bound on L(θ_{new}).
- It can be proven that there exists the following bound^{1,2}:

$$\eta(\pi_{new}) \ge L(\pi_{new}) - C \cdot D_{KL}^{max}(\pi_{old}, \pi_{new})$$
, where $C = \frac{4\varepsilon\gamma}{(1-\gamma)^2}$

• A monotonically increasing policy can be defined by (minorization-maximization algorithm):

$$\pi = \arg \max_{\pi} [L(\pi_{new}) - C \cdot D_{KL}^{max} (\pi_{old}, \pi_{new})], \text{ where } C = \frac{4\varepsilon\gamma}{(1-\gamma)^2}$$

Side-note:

• A constraint on the KL-divergence between new and old policy (i.e., a trust region constraint) allows larger step sizes while being mathematically equivalent:

$$\pi = \arg \max_{\pi} L_{\pi_{old}}$$
, such that $D_{KL}^{max}(\pi_{old}, \pi) \leq \delta$

• Approximation with *L* is accurate within δ \rightarrow here, monotonic improvement guaranteed

PPO (clipping version)

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), g(\epsilon, A^{\pi_{\theta_k}}(s, a))\right),$$

where

$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0. \end{cases}$$