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Introduction

Evaluating Machine Learning Algorithms

Subjective evaluations

Pros: leverage intuition
Cons: cannot expose fallacious assumptions

Theoretical results

Pros: rigorous
Cons: not always obtainable; conditions may not apply

Empirical evaluations

Pros: yields insights, spurs innovation
Cons: evaluation overfitting
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Introduction

The Problem

One common approach: measure average cumulative reward
across independent trials in a fixed benchmark environment

Various design choices can yield an overfit method:

State representation
Initial value function
Learning rate, etc.

Extreme example: ‘learning algorithm’ for Mountain Car
that begins with optimal policy

Goal

Devise empirical methodologies that guard against
overfitting in on-line reinforcement learning
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Evaluation Overfitting

Evaluation Process

A self-interested designer creates an agent with which an
evaluator conducts independent trials yielding a score
estimating some statistics, e.g., expected cumulative reward

Scores implicitly represent performance on a target distribution

In evaluation overfitting:

Evaluation yields a high score
Performance across target distribution is poor
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Evaluation Overfitting

Data vs. Environment Overfitting

In data overfitting:

Function agent produces is too customized to evaluation data
Poor generalization to new data from same environment

In environment overfitting:

Agent is too customized to evaluation environment
Poor generalization to other environments in target distribution

While data overfitting is problematic in supervised learning,
evaluation overfitting is problematic in reinforcement learning
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Evaluation Overfitting

Fitting vs. Overfitting

How broad should the target distribution be?

Broadly applicable agents are desirable
But specializing can give leverage

Can environment overfitting be good?

No, but target distribution may be small
Fitting: customizing to target distribution at expense of others
Overfitting: customizing to evaluation setting at expense of
target distribution

In reinforcement learning, target distributions need multiple
environments in order to create reducible uncertainty
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Generalized Environments

Single-environment methodologies are not ideal

Invite environment overfitting
Still useful given a good-faith effort by designers

Simple solution: formalize the target distribution in a
generalized environment

G = 〈Θ, µ〉, a distribution µ over a set of environments Θ
Score computed from multiple trials, each in a different
environment sampled from Θ according to µ

Example: Helicopter Hovering in the RL Competition

Goal is to hover a helicopter in a fixed position; each trial has
a different θ with an unknown wind velocity
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Generalized Environments

Open Generalized Methodology

G is known to designer

In tuning phase, designer
samples θ’s freely from G
In test phase, evaluator samples
new θ from G for each trial

Protects against both data and
environment overfitting

Designer

Evaluator

Agent

Tuning
Environments

Testing
Environments

Generalized
Environment
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Generalized Environments

Secret Generalized Methodology

Open methodology creates uncertainty about θ but not G
G may only approximate true target distribution

In uncertainty overfitting, the agent is customized to G at the
expense of other possible true target distributions

In secret generalized methodology:

G is hidden
Designer receives only a fixed set of θ’s sampled from G
Agent is tested on independent θ’s sampled from G

Pros and cons:

Protects against data, environment, and uncertainty overfitting
Does not require formalizing G
Requires secrecy: limited to one-shot settings
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Generalized Environments

Meta-Generalized Methodology

Avoid trade-offs with a meta-generalized environment

H = 〈Γ, τ〉, a distribution τ over a set of generalized
environments Γ

In meta-generalized methodology:

In tuning, designer samples freely from H
In testing, each meta-trial, involves a series of trials on
environments sampled from a fixed Gi sampled from H

Pros and cons

Protects against data, environment, and uncertainty overfitting
No secrecy required
Requires formalizing H and conducting many trials
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Generalized Environments

Generalized Performance Measures

Example: Averaging Temperatures from Different Scales

The statement “the average of 〈−32◦C, 130◦F〉 is greater
than that of 〈−10◦C, 100◦F〉” is true but not meaningful:
converting the ◦F measurements to ◦C makes it false.

Reward scales in reinforcement learning are often arbitrary

Averages across differently scaled environments can mislead

Many other performance measures are possible

The sign test counts how many times one agent outperforms
another in a series of matched trials.
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Results

Experimental Approach

Devise an intuitively useful adaptive function approximator

Show that generalized methodologies can validate it but
single-environment methodologies cannot

Evaluate the methodology, not the learning algorithm
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Results

Range-Adaptive Tile Coding

Tile coding requires knowledge of state value ranges

Instead, dynamically spread fixed memory over observed values

When values outside range occur, transplant to a larger range

Algorithm 1 Transplant

for i := 0 . . . numTiles do
c := getCenterOfTile(i,oldInputRanges)
k := getTileForState(c,newInputRanges)
newWeights[k] := newWeights[k] + oldWeights[i]
newWeightCounts[k] := newWeightCounts[k] + 1

end for
for i := 0 . . . numTiles do

newWeights[i] := newWeights[i]/newWeightCounts[i]
end for



Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning

Results

Generalizations and Methods

Environments:

Mountain Car
Acrobot
Puddle World

Generalizations:

Action effects randomly perturbed
Observations scaled, inverted, translated, trigonometric
nonlinearities applied
Initial state fixed or random

Methods:

Adaptive (A): range-adaptive tile coder
Baseline (B): smallest range sufficient for all environments
Cheater (C): perfect environment-specific range info

Each method is tuned to each generalized environment
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Results

Generalized Methodology Results
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Results

Using the Sign Test

Tuned agents selected via Copeland’s method are the same
(except for Puddle World)

Comparisons between A, B, and C are the same for each
generalized environment

Different story on union task:

Cannot distinguish A and C with averaging or sign test metrics
Tuned adaptive agent selected via Copeland’s method is better
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Results

Conclusions

Generalized methodologies for reinforcement learning

Protect against environment overfitting
Enable fairer comparisons between agents
Make explicit what environment generality is desired
Incentivize adaptable algorithms

Form of methodology depends on purpose of evaluation

One-shot settings: secret methodologies protect against
uncertainty overfitting
Otherwise: open methodologies do not need secrecy

Performance measure depends on generalized environment

Averaging for similar, well-understood environments
Sign tests for disparate environments with arbitrary scales
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