Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning

Shimon Whiteson, University of Amsterdam Brian Tanner, University of Alberta Matthew E. Taylor, Lafayette College Peter Stone, University of Texas at Austin

March 4, 2011

Introduction

Evaluating Machine Learning Algorithms

■ Subjective evaluations

- **Pros:** leverage intuition
- Cons: cannot expose fallacious assumptions
- Theoretical results
	- Pros: rigorous
	- Cons: not always obtainable; conditions may not apply

- **Empirical evaluations**
	- **Pros:** yields insights, spurs innovation
	- Cons: evaluation overfitting

Introduction

The Problem

- **One common approach**: measure average cumulative reward across independent trials in a fixed benchmark environment
- Various design choices can yield an overfit method:
	- State representation
	- **Initial value function**
	- Learning rate, etc.

Extreme example: 'learning algorithm' for Mountain Car that begins with optimal policy

Devise empirical methodologies that guard against overfitting in on-line reinforcement learning

Introduction

The Problem

- **One common approach**: measure average cumulative reward across independent trials in a fixed benchmark environment
- Various design choices can yield an overfit method:
	- State representation
	- **Initial value function**
	- Learning rate, etc.

Extreme example: 'learning algorithm' for Mountain Car that begins with optimal policy

Goal

Devise empirical methodologies that guard against overfitting in on-line reinforcement learning

[Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning](#page-0-0)

Introduction

Outline

Exaluation Overfitting

- Data vs. Environment Overfitting
- Fitting vs. Overfitting
- Generalized Environments
	- **Den Generalized Methodology**
	- Secret Generalized Methodology
	- Meta-Generalized Methodology
	- Generalized Performance Measures

KORK ERKER ADE YOUR

Results

[Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning](#page-0-0)

LEvaluation Overfitting

Evaluation Overfitting

Evaluation Process

A self-interested designer creates an agent with which an evaluator conducts independent trials yielding a score estimating some statistics, e.g., expected cumulative reward

Scores implicitly represent performance on a target distribution In evaluation overfitting:

- **Evaluation yields a high score**
- **Performance across target distribution is poor**

[Protecting Against Evaluation Overfitting in Empirical Reinforcement Learning](#page-0-0)

LEvaluation Overfitting

Evaluation Overfitting

Evaluation Process

A self-interested designer creates an agent with which an evaluator conducts independent trials yielding a score estimating some statistics, e.g., expected cumulative reward

Scores implicitly represent performance on a target distribution

- In evaluation overfitting:
	- **Exaluation yields a high score**
	- **Performance across target distribution is poor**

LEvaluation Overfitting

Data vs. Environment Overfitting

\blacksquare In data overfitting:

- **Function agent produces is too customized to evaluation data**
- Poor generalization to new data from same environment
- In environment overfitting:
	- Agent is too customized to evaluation environment
	- **Poor generalization to other environments in target distribution**

KORK ERKER ADE YOUR

While data overfitting is problematic in supervised learning, evaluation overfitting is problematic in reinforcement learning Evaluation Overfitting

Data vs. Environment Overfitting

In data overfitting:

- **Function agent produces is too customized to evaluation data**
- **Poor generalization to new data from same environment**
- In environment overfitting:
	- Agent is too customized to evaluation environment
	- **Poor generalization to other environments in target distribution**

KORK ERKER ADE YOUR

While data overfitting is problematic in supervised learning, evaluation overfitting is problematic in reinforcement learning **L**Evaluation Overfitting

Fitting vs. Overfitting

- \blacksquare How broad should the target distribution be?
	- Broadly applicable agents are desirable
	- But specializing can give leverage $\mathcal{L}_{\mathcal{A}}$
- Can environment overfitting be good?
	- No, but target distribution may be small
	- Fitting: customizing to target distribution at expense of others

KORK ERKER ADE YOUR

Overfitting: customizing to evaluation setting at expense of target distribution

In reinforcement learning, target distributions need multiple environments in order to create reducible uncertainty

Evaluation Overfitting

Fitting vs. Overfitting

- \blacksquare How broad should the target distribution be?
	- Broadly applicable agents are desirable
	- But specializing can give leverage
- Can environment overfitting be good?
	- No, but target distribution may be small
	- Fitting: customizing to target distribution at expense of others
	- Overfitting: customizing to evaluation setting at expense of target distribution

In reinforcement learning, target distributions need multiple environments in order to create reducible uncertainty

Generalized Environments

Single-environment methodologies are not ideal

- **Invite environment overfitting**
- Still useful given a good-faith effort by designers
- **Simple solution:** formalize the target distribution in a
	- $\mathcal{G} = \langle \Theta, \mu \rangle$, a distribution μ over a set of environments Θ Score computed from multiple trials, each in a different environment sampled from Θ according to μ

Goal is to hover a helicopter in a fixed position; each trial has a different θ with an unknown wind velocity

Generalized Environments

Single-environment methodologies are not ideal

- **Invite environment overfitting**
- Still useful given a good-faith effort by designers
- **Simple solution**: formalize the target distribution in a generalized environment
	- $\mathcal{G} = \langle \Theta, \mu \rangle$, a distribution μ over a set of environments Θ Score computed from multiple trials, each in a different
	- environment sampled from Θ according to μ

Goal is to hover a helicopter in a fixed position; each trial has a different θ with an unknown wind velocity

KORKARA KERKER SAGA

Generalized Environments

Single-environment methodologies are not ideal

- **Invite environment overfitting**
- Still useful given a good-faith effort by designers
- **Simple solution**: formalize the target distribution in a generalized environment
	- $\mathcal{G} = \langle \Theta, \mu \rangle$, a distribution μ over a set of environments Θ
	- Score computed from multiple trials, each in a different environment sampled from Θ according to μ

Example: Helicopter Hovering in the RL Competition

Goal is to hover a helicopter in a fixed position; each trial has a different θ with an unknown wind velocity

Open Generalized Methodology

- G is known to designer
- In tuning phase, designer samples θ 's freely from $\mathcal G$
- In test phase, evaluator samples new θ from $\mathcal G$ for each trial
- **Protects against both data and** environment overfitting

Secret Generalized Methodology

- **Open methodology creates uncertainty about** θ **but not** \mathcal{G}
- \Box G may only approximate true target distribution
- In uncertainty overfitting, the agent is customized to G at the expense of other possible true target distributions
- **n** In secret generalized methodology:
	- G is hidden
	- **Designer receives only a fixed set of** θ **'s sampled from** \mathcal{G}
	- Agent is tested on independent θ 's sampled from $\mathcal G$
- **Pros and cons:**
	- **Protects against data, environment, and uncertainty overfitting**
	- \blacksquare Does not require formalizing G
	- Requires secrecy: limited to one-shot settings

Secret Generalized Methodology

- **Open methodology creates uncertainty about** θ **but not** \mathcal{G}
- \Box G may only approximate true target distribution
- In uncertainty overfitting, the agent is customized to G at the expense of other possible true target distributions
- In secret generalized methodology:
	- G is hidden
	- **Designer receives only a fixed set of** θ **'s sampled from** \mathcal{G}
	- Agent is tested on independent θ 's sampled from $\mathcal G$
- **Pros and cons:**
	- **Protects against data, environment, and uncertainty overfitting**
	- \blacksquare Does not require formalizing $\mathcal G$
	- Requires secrecy: limited to one-shot settings

Meta-Generalized Methodology

- Avoid trade-offs with a meta-generalized environment
- $\mathcal{H} = \langle \Gamma, \tau \rangle$, a distribution τ over a set of generalized environments Γ
- **n** In meta-generalized methodology:
	- In tuning, designer samples freely from H
	- In testing, each meta-trial, involves a series of trials on environments sampled from a fixed G_i sampled from H
- **Pros and cons**
	- **Protects against data, environment, and uncertainty overfitting**

- No secrecy required
- Requires formalizing H and conducting many trials

Meta-Generalized Methodology

- Avoid trade-offs with a meta-generalized environment
- $\mathcal{H} = \langle \Gamma, \tau \rangle$, a distribution τ over a set of generalized environments Γ
- **In meta-generalized methodology:**
	- In tuning, designer samples freely from H
	- In testing, each meta-trial, involves a series of trials on environments sampled from a fixed G_i sampled from H
- **Pros and cons**
	- **Protects against data, environment, and uncertainty overfitting**
	- No secrecy required
	- Requires formalizing H and conducting many trials

Generalized Performance Measures

Example: Averaging Temperatures from Different Scales

The statement "the average of $\langle -32^\circ \text{C}, 130^\circ \text{F} \rangle$ is greater than that of $\langle -10$ °C, 100°F)" is true but not meaningful: converting the $\mathrm{^{\circ}F}$ measurements to $\mathrm{^{\circ}C}$ makes it false.

- Reward scales in reinforcement learning are often arbitrary
- **Averages across differently scaled environments can mislead**
- **Many other performance measures are possible**
- The sign test counts how many times one agent outperforms another in a series of matched trials.

Generalized Performance Measures

Example: Averaging Temperatures from Different Scales

The statement "the average of $\langle -32^\circ \text{C}, 130^\circ \text{F} \rangle$ is greater than that of $\langle -10$ °C, 100 °F)" is true but not meaningful: converting the $\mathrm{^{\circ}F}$ measurements to $\mathrm{^{\circ}C}$ makes it false.

- Reward scales in reinforcement learning are often arbitrary
- Averages across differently scaled environments can mislead
- **Many other performance measures are possible**
- \blacksquare The sign test counts how many times one agent outperforms another in a series of matched trials.

Experimental Approach

- **Devise an intuitively useful adaptive function approximator**
- Show that generalized methodologies can validate it but single-environment methodologies cannot

KORK ERKER ADE YOUR

Evaluate the methodology, not the learning algorithm

Range-Adaptive Tile Coding

- \blacksquare Tile coding requires knowledge of state value ranges
- **Instead, dynamically spread fixed memory over observed values**
- When values outside range occur, transplant to a larger range

Algorithm 1 TRANSPLANT

for $i = 0$. num Tiles do

 $c := getCenterOfTile(i,oldInputRange)$

 $k := getTileForState(c,newInputRange)$ $newWeights[k] := newWeights[k] + oldWeights[i]$

 $newWeightCounts[k] := newWeightCounts[k] + 1$

end for

for $i := 0 \ldots$ num Tiles do $newWeightS[i] := newWeightS[i]/newWeightCountS[i]$ end for

Generalizations and Methods

Environments:

- **Mountain Car**
- Acrobot
- **Puddle World**

Generalizations:

- Action effects randomly perturbed
- Observations scaled, inverted, translated, trigonometric nonlinearities applied
- **Initial state fixed or random**

■ Methods:

- **Adaptive (A)**: range-adaptive tile coder
- **Baseline (B)**: smallest range sufficient for all environments
- **Cheater (C)**: perfect environment-specific range info

■ Each method is tuned to each generalized environment

 L Results

Generalized Methodology Results

İ, 299 4日) 三、母 ∍ ∍

Using the Sign Test

- Tuned agents selected via Copeland's method are the same (except for Puddle World)
- **Comparisons between A, B, and C are the same for each** generalized environment
- Different story on union task:
	- Cannot distinguish A and C with averaging or sign test metrics
	- Tuned adaptive agent selected via Copeland's method is better

Conclusions

Generalized methodologies for reinforcement learning

- **Protect against environment overfitting**
- Enable fairer comparisons between agents
- Make explicit what environment generality is desired
- \blacksquare Incentivize adaptable algorithms
- **Form of methodology depends on purpose of evaluation**
	- One-shot settings: secret methodologies protect against uncertainty overfitting
	- Otherwise: open methodologies do not need secrecy
- **Performance measure depends on generalized environment**
	- Averaging for similar, well-understood environments
	- Sign tests for disparate environments with arbitrary scales

Conclusions

Generalized methodologies for reinforcement learning

- **Protect against environment overfitting**
- **Enable fairer comparisons between agents**
- Make explicit what environment generality is desired
- \blacksquare Incentivize adaptable algorithms

Form of methodology depends on purpose of evaluation

- One-shot settings: secret methodologies protect against uncertainty overfitting
- Otherwise: open methodologies do not need secrecy
- **Performance measure depends on generalized environment**
	- **Averaging for similar, well-understood environments**
	- Sign tests for disparate environments with arbitrary scales

Conclusions

Generalized methodologies for reinforcement learning

- **Protect against environment overfitting**
- **Enable fairer comparisons between agents**
- Make explicit what environment generality is desired
- \blacksquare Incentivize adaptable algorithms
- Form of methodology depends on purpose of evaluation
	- One-shot settings: secret methodologies protect against uncertainty overfitting
	- Otherwise: open methodologies do not need secrecy
- **Performance measure depends on generalized environment**
	- Averaging for similar, well-understood environments
	- Sign tests for disparate environments with arbitrary scales