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Chapter 3
• Defined the problem

• Introduced some important notation and concepts.

− Returns
− Markov property
− State/action value functions
− Bellman equations
− Get comfortable with them!
− qπ(s, a) =. . . (Exercise 3.13)
− Backup diagrams

• Solution methods start in Chapter 4

− What does it mean to solve an RL problem?
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Formulating the RL problem

• Art more than science

• States, actions, rewards

− Rewards: no hints on how to solve the problem
− Joseph Muffoletto: in chess, doesn’t that make the

problem very hard to solve?

• Discount factor part of the environment
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Markov property

• Does it hold in the real world?

− Nikita Gollamudi: Are any systems "fundamentally" non-
Markovian?
− What if there’s a time horizon?

• It’s an ideal

− Will allow us to prove properties of algorithms
− Algorithms may still work when not provably correct
− Could you compensate? Do algorithms change?
− If not, you may want different algorithms (Monte Carlo)
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Chapter 4

• Solution methods given a model

− So no exploration vs. exploitation

• Use bootstrapping
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Policy Evaluation

• V π exists and is unique if γ < 1 or termination guaranteed
for all states under policy π.

• Policy evaluation converges under the same conditions

• Policy evaluation on the week 1 problem

− undiscounted, episodic
− Are the conditions met?
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Policy Improvement

• Policy improvement theorem:
∀s, qπ(s, π′(s)) ≥ vπ(s)⇒ ∀s, vπ′(s) ≥ vπ(s)

• Polynomial time convergence (in number of states n and
actions m) even though mn policies.

− Ignoring effect of γ and bits to represent rewards/transitions
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Value Iteration on Week 1 problem

• Show the new policy at each step

− Doesn’t actually compute policy
− Break policy ties with equiprobable actions
− No stochastic transitions

• How would policy iteration proceed in comparison?

− More or fewer policy updates?
− True in general?

• How important are the initial values?
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Interesting Questions
• Oguzhan Akcin: Is it possible for DP to get stuck in the local

minimum?

• Jiaxun Cui: If we are not able to visit each state at least
once, do PE and PI find an optimal policy?

• Caroline Wang: Why treat prediction and control
separately? Why is the prediction problem important?

• Stephane Hatgiskessell: When can asynchronous DP
ignore states?

• Jeongmu Daniel Hahn: How can asynchronous DP
reduce memory usage?
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Chapter 4 Summary

• Chapter 4 treats bootstrapping with a model

− Next: no model and no bootstrapping
− Then: no model, but bootstrapping
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