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• Do programming assignments!

• Start thinking about final project

• Next week’s readings

− On-policy prediction with approximation
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Bridging Methods

• n-step methods bridge TD and MC

− TD(0) −→ MC
− All online (model-free)

• Today we talk about bridging to DP (model-based)

− TD,MC −→ DP (e.g. VI)
− Also called learning vs. planning
− Model-based RL does both
− computational efficiency vs. sample efficiency

• Recall TD(0) converges to certainty equivalence model

− So does Dyna
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2 distinct types of planning

• Model-based learning

− e.g. Dyna

• Lookahead search

− e.g. Monte Carlo Tree Search (MCTS)
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Heuristic Search

• Good Old Fashioned AI (GOFAI)

• Rich area (even though the book minimizes it)

• Generally searches for a single path, not a policy

• Uses a relational representation

• Main conference: ICAPS

• Not same as evolutionary search, black-box optimization
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Interesting Questions

• Shubhankar Agarwal: Is Planning always better than
learning if we have an accurate dynamics model?

• Imran Khan: When would planning and learning give us
the exact same policy? Would it only be in the case where
we have a perfect model?

• Hsing-Huan Chung: Why would we want to use model-
free learning methods if we have a full MDP model?
Wouldn’t dynamic programming solve the problem
easily?
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Interesting Questions

• Sharachchandra Bhat: For Dyna-Q, what happens when
the transition function has never seen the particular state-
action pair?

• Shenghui Chen: In Dyna-Q, the learned model is used to
simulate experience n times; how do we choose n?
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Interesting Questions

• Chima: Is there a reason to use vanilla DP over RTDP?

− Trajectories may only start from a certain states

• Humza Qavi: Why is RTDP guaranteed to find an optimal
policy without visiting some of the states?
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Summary So Far
• Bandits

• Markov Decision Processes (MDPs)

• Dynamic Programming (DP)

• Monte Carlo (MC)

• Temporal Difference (TD)

• n-step bootstrapping: TD −→ MC

• Planning and learning: TD,MC −→ DP

• Next: value function approximation
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