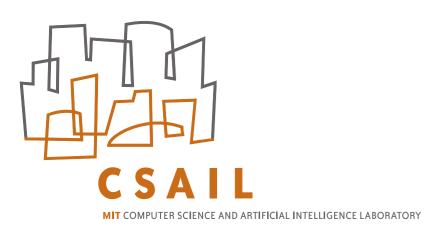
TDγ

George Konidaris gdk@csail.mit.edu

(joint work with Scott Niekum and Phil Thomas)



Introduction

TD(λ): Dominant family of RL algorithms.

- Parameter λ used to mix unbiased, high-variance estimates with biased, low-variance estimates.
- λ must be set manually.
- Up until now, we did not understand what it really does.

This talk:

- Expose assumptions underlying TD(λ).
- Show that they are wrong!

Propose another - parameter free - method, TD_Y.

$TD(\lambda)$

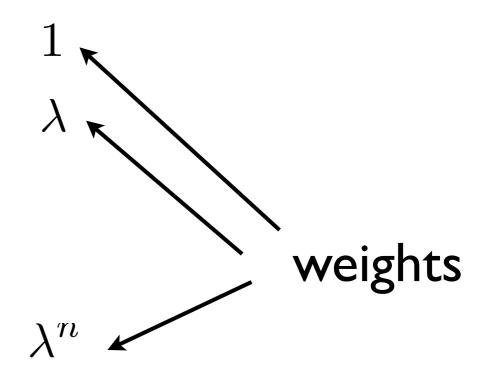
Weighted sum:

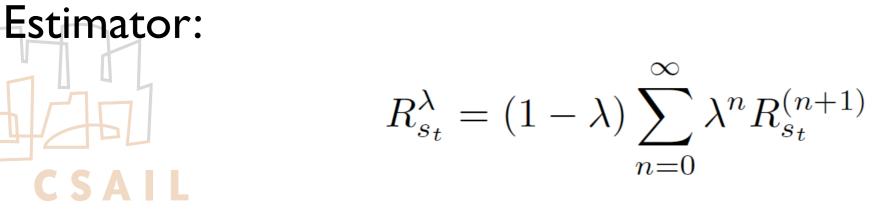
$$R^{(1)} = r_0 + \gamma V(s_1)$$

$$R^{(2)} = r_0 + \gamma r_1 + \gamma^2 V(s_2)$$

.
.

$$R^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_i + \gamma^n V(s_n)$$





MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

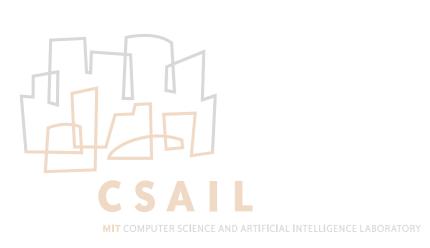
TD(λ)

This is called the λ -return.

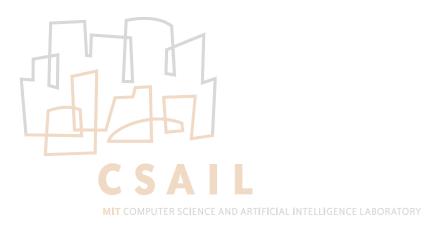
- At $\lambda = 0$ we get TD, at $\lambda = 1$ we get MC.
- Intermediate values of λ usually best.

Results in a *family* of algorithms.

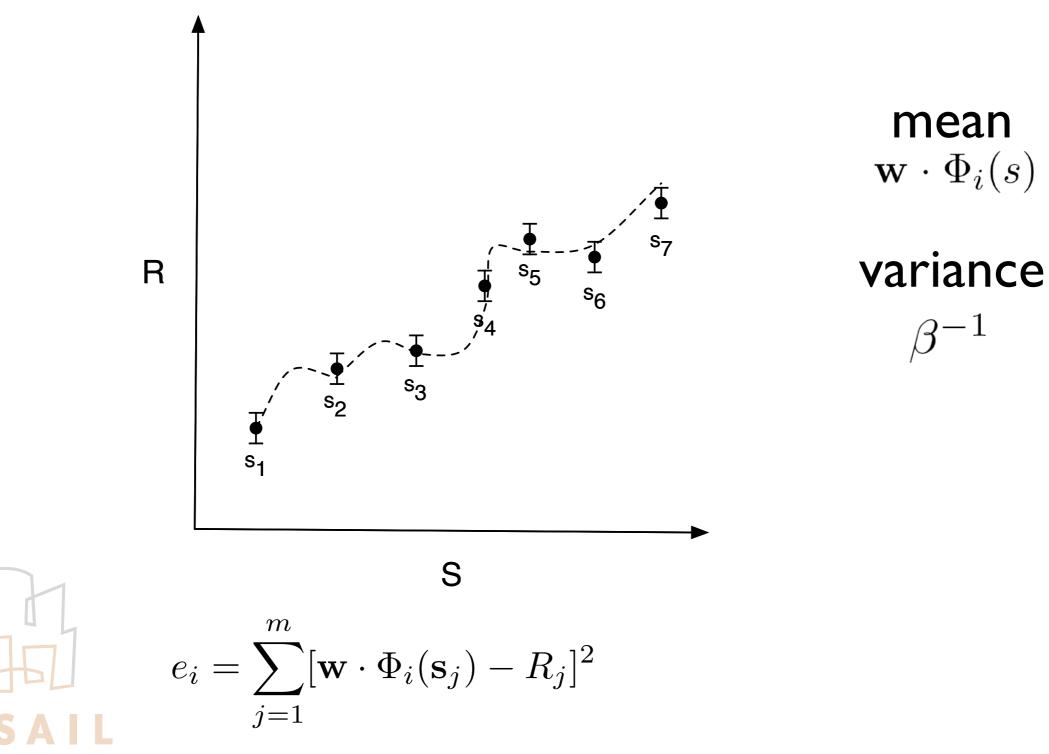
- Update rules via error metric using λ -return.
- Used almost exclusively, unchanged, since 1988.
- Original paper has ~3000 citations.



• What are the implicit assumptions that lead to this estimator?

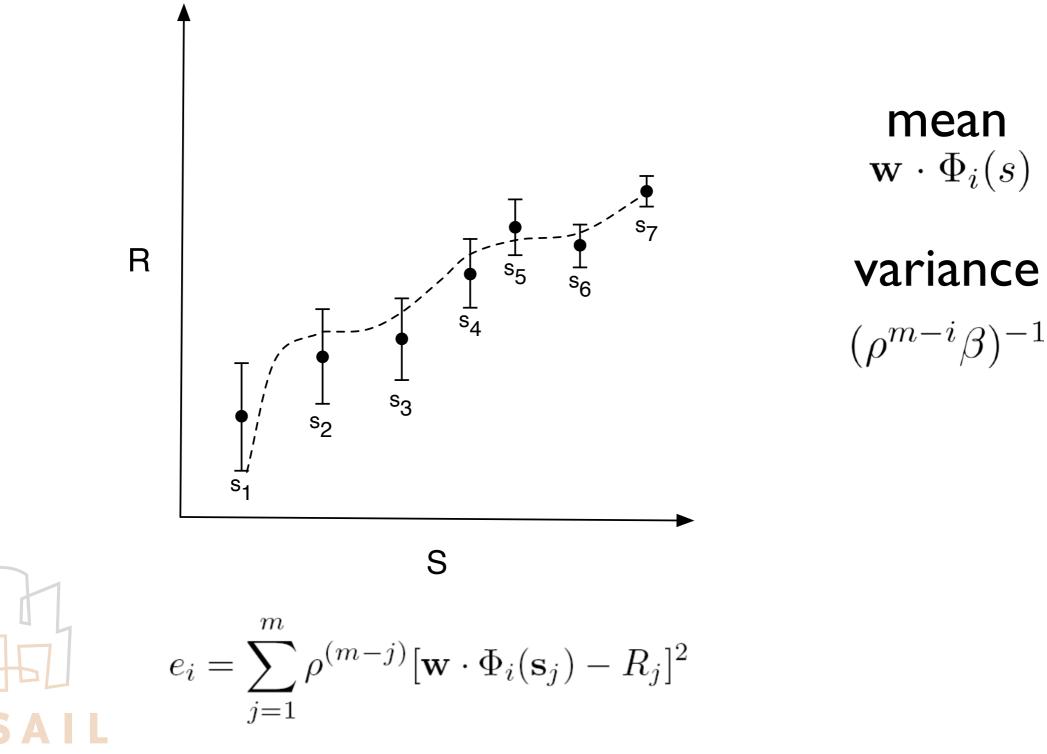


Linear Least-Squares



MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATOR

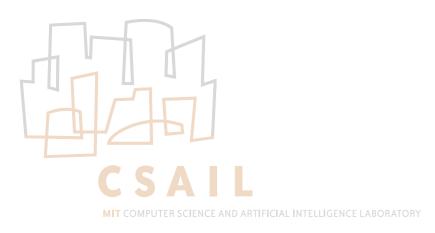
Weighted Linear Least-Squares



MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Consider the following assumptions:

- Each *n*-step rollout is independent.
- Each *n*-step rollout is normally distributed with mean of the true return.
- Variance of n-step rollout is k(n).



$TD(\lambda)$

Likelihood:

$$\mathcal{L}(\hat{R}_{s_t}|R_{s_t}^{(1)}, \dots, R_{s_t}^{(n)}; k) = \prod_{n=1}^L \mathcal{N}(R_{s_t}^{(n)}|\hat{R}_{s_t}, k(n))$$

Maximizing the log likelihood:

$$\hat{R}_{s_t} = \frac{\sum_{n=1}^{L} k(n)^{-1} R_{s_t}^{(n)}}{\sum_{n=1}^{L} k(n)^{-1}}$$

this is the λ -return, where:

$$\frac{k(n)}{L \to \infty} = \lambda^{-n}$$

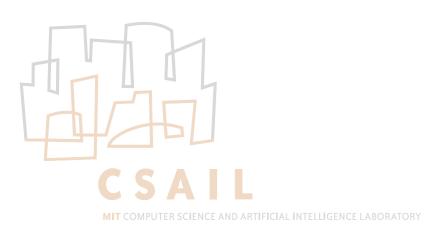
MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATOR

TD(λ)

Therefore, λ -return is the estimator you get given three assumptions:

- Normal distribution of return estimates.
- Independence of rollouts.
- Variance of rollouts increases geometrically with common ratio 1/λ.

All three of these assumptions are false.



On Rollout Variance

Let's let the first two slide, and consider the variance of an *n*-step sample return:

$$Var\left[R_{s_{t}}^{(n)}\right] = Var\left[R_{s_{t}}^{(n-1)} - \gamma^{n-1}V(s_{t+n-1}) + \gamma^{n-1}r_{t+n-1} + \gamma^{n}V(s_{t+n})\right]$$
$$= Var\left[R_{s_{t}}^{(n-1)}\right] + \gamma^{2(n-1)}Var\left[V(s_{t+n-1}) - (r_{t+n-1} + \gamma V(s_{t+n}))\right]$$
$$+ 2Cov\left[R_{s_{t}}^{(n-1)}, -\gamma^{n-1}V(s_{t+n-1}) + \gamma^{n-1}r_{t+n-1} + \gamma^{n}V(s_{t+n})\right].$$

First thing to notice:

- Variance increases from *n*-1 to *n* **additively**.
 - We assume the covariance away.

New Variance Model

We obtain:

$$TD \text{ error at step } n$$

$$Var\left[R_{s_t}^{(n)}\right] \approx Var\left[R_{s_t}^{(n-1)}\right] + \gamma^{2(n-1)}Var\left[V(s_{t+n-1}) - (r_{t+n-1} + \gamma V(s_{t+n}))\right]$$

We assume the TD error variance is the same everywhere, set its value to K.

Simple model of the variance of an *n*-step sample of return:

$$k(n) = \sum_{i=1}^{n} \gamma^{2(i-1)} \kappa.$$

 $\textbf{TD}_{\boldsymbol{\gamma}}$

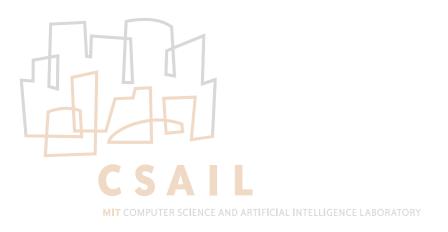
Resulting estimator:

$$R_{s_t}^{\gamma} = \frac{\kappa^{-1} \sum_{n=1}^{L} (\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1} R_{s_t}^{(n)}}{\kappa^{-1} \sum_{n=1}^{L} (\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}} = \sum_{n=1}^{L} w(n, L) R_{s_t}^{(n)}$$

where

$$w(n,L) = \frac{(\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}{\sum_{n=1}^{L} (\sum_{i=1}^{n} \gamma^{2(i-1)})^{-1}}$$

Parameter-free!



TDγ

٠

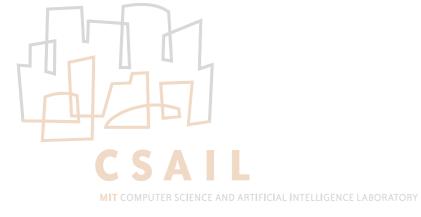
Weighted sum:

 $\begin{aligned} R^{(1)} &= r_0 + \gamma V(s_1) & \frac{1}{1} \\ R^{(2)} &= r_0 + \gamma r_1 + \gamma^2 V(s_2) & \frac{1}{1 + \gamma^2} \\ R^{(3)} &= r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 V(s_3) & \frac{1}{1 + \gamma^2 + \gamma^4} \end{aligned}$

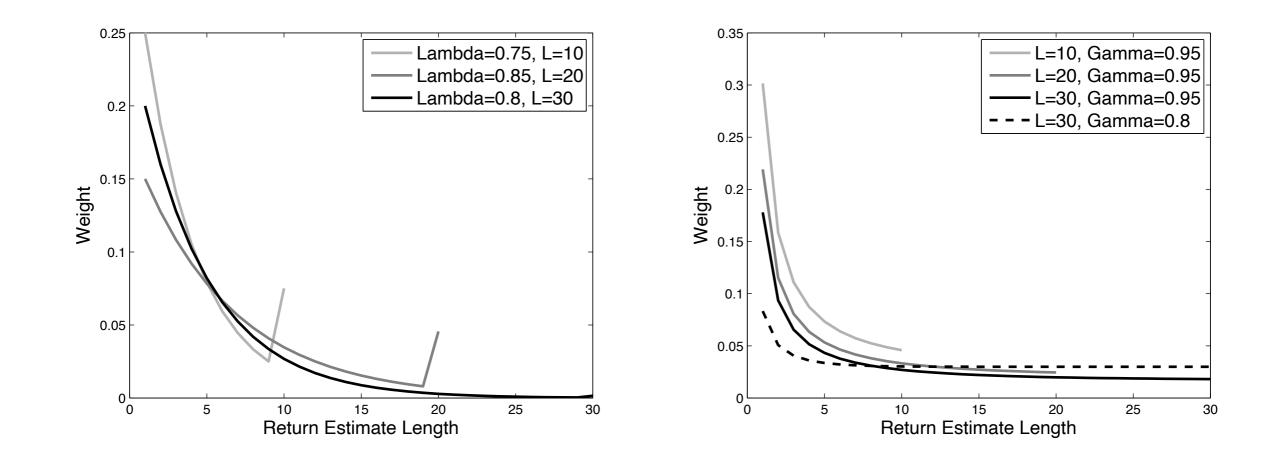
$$\dot{R}^{(n)} = \sum_{i=0}^{n-1} \gamma^i r_i + \gamma^n V(s_n)$$

 $\frac{1}{1+\gamma^2+\gamma^4+\ldots\gamma^{2n}}$

weights

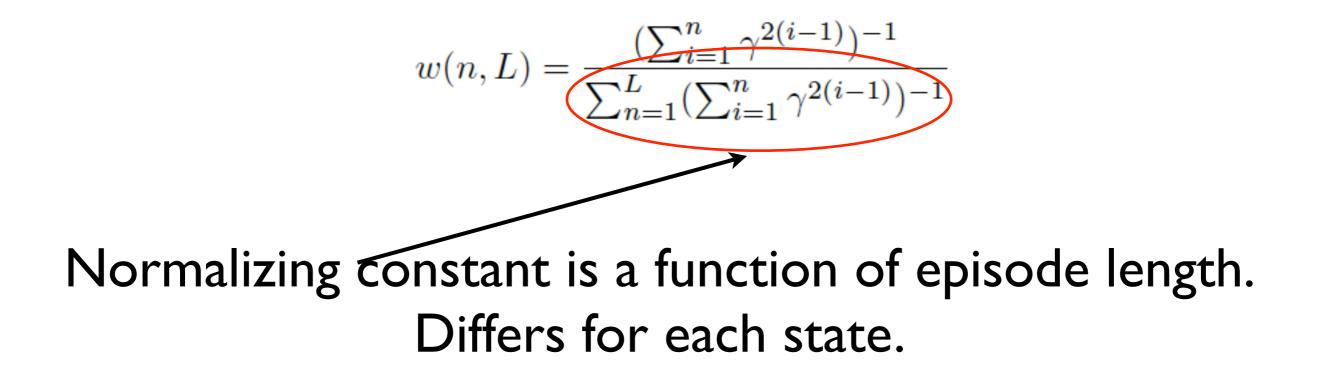


$TD_{\gamma vs.}TD(\lambda)$

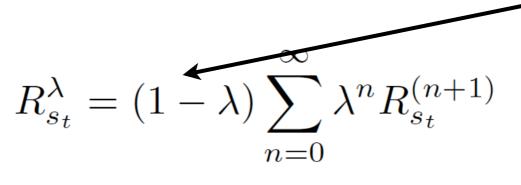


CSAL MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

The Catch



 λ -return avoids this because it assumes episode is infinitely long, and sum of weights tends to a constant.



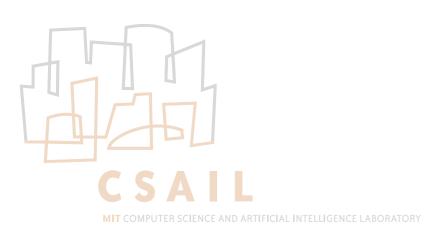
So:

TD γ kills λ and replaces TD(λ) if:

- We can be incremental episode-wise.
- We can process in a batch.

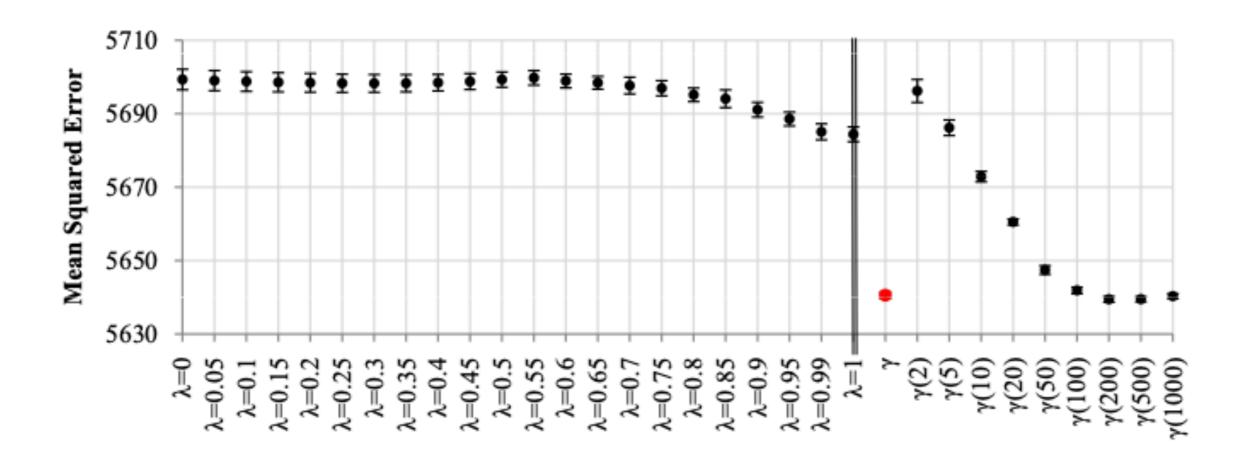
But not if we must be incremental transition-wise.

- We impose capacity *C*.
- Use the first C rollouts.
- Normalizer not known, except for last C-1 steps.



Results

Acrobot



Similar for another 4 domains.

TD γ beats TD(λ) for any value of λ (4/5) Intermediate values of C do very well.

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATOR

Future Work

Better model of the variance.

Model that affords a completely incremental implementation.

Other members of the TD γ family:

- LSTDY
- Sarsa_Y
- GQY

Account for covariance:TD(Omega)

