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Introduction
TD(λ): Dominant family of RL algorithms.

• Parameter λ used to mix unbiased, high-variance 
estimates with biased, low-variance estimates.

• λ must be set manually.
• Up until now, we did not understand what it really does.

This talk:
• Expose assumptions underlying TD(λ).
• Show that they are wrong!
• Propose another - parameter free - method, TDϒ.



TD(λ)
Weighted sum:

   .
   .
   .

Estimator:

R(1) = r0 + �V (s1)
R(2) = r0 + �r1 + �2V (s2)

R(n) =
n�1X

i=0

�iri + �nV (sn)

1
�

�n

weights



TD(λ)
This is called the λ-return.

• At λ=0 we get TD, at λ=1 we get MC.
• Intermediate values of λ usually best.

Results in a family of algorithms.
• Update rules via error metric using λ-return.
• Used almost exclusively, unchanged, since 1988.
• Original paper has ~3000 citations.



TD(λ)

• What are the implicit assumptions that lead to this 
estimator?



Linear Least-Squares
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Weighted Linear Least-Squares
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TD(λ)
Consider the following assumptions:

• Each n-step rollout is independent.                

• Each n-step rollout is normally distributed with mean of 
the true return.      

• Variance of n-step rollout is k(n). 



TD(λ)
Likelihood:

Maximizing the log likelihood:

this is the λ-return, where:

L → ∞



TD(λ)
Therefore, λ-return is the estimator you get given three 
assumptions:

• Normal distribution of return estimates.
• Independence of rollouts.
• Variance of rollouts increases geometrically with 

common ratio 1/λ.

All three of these assumptions are false. 



On Rollout Variance
Let’s let the first two slide, and consider the variance of an n-
step sample return:

First thing to notice:
• Variance increases from n-1 to n additively.
• We assume the covariance away.



New Variance Model
We obtain:

TD error at step n

We assume the TD error variance is the same everywhere, set 
its value to κ. 

Simple model of the variance of an n-step sample of return:



TDγ
Resulting estimator:

where

Parameter-free!



TDγ
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TDγ vs. TD(λ)
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The Catch

Normalizing constant is a function of episode length.
Differs for each state.

λ-return avoids this because it assumes episode is 
infinitely long, and sum of weights tends to a constant.



So:
TDγ kills λ and replaces TD(λ) if:

• We can be incremental episode-wise.
• We can process in a batch.

But not if we must be incremental transition-wise. 
• We impose capacity C.
• Use the first C rollouts.
• Normalizer not known, except for last C-1steps.



Results
Acrobot

Similar for another 4 domains.
• TDγ beats TD(λ) for any value of λ (4/5)
• Intermediate values of C do very well.



Future Work
Better model of the variance.
Model that affords a completely incremental implementation.

Other members of the TDγ family:
• LSTDγ
• Sarsaγ
• GQγ

Account for covariance: TD(Omega) 


