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Introduction
TD(λ): Dominant family of RL algorithms.


• Parameter λ used to mix unbiased, high-variance 
estimates with biased, low-variance estimates.


• λ must be set manually.

• Up until now, we did not understand what it really does.


This talk:

• Expose assumptions underlying TD(λ).

• Show that they are wrong!

• Propose another - parameter free - method, TDϒ.
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TD(λ)
This is called the λ-return.


• At λ=0 we get TD, at λ=1 we get MC.

• Intermediate values of λ usually best.


Results in a family of algorithms.

• Update rules via error metric using λ-return.

• Used almost exclusively, unchanged, since 1988.

• Original paper has ~3000 citations.



TD(λ)

• What are the implicit assumptions that lead to this 
estimator?




Linear Least-Squares
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Weighted Linear Least-Squares
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TD(λ)
Consider the following assumptions:


• Each n-step rollout is independent.                


• Each n-step rollout is normally distributed with mean of 
the true return.      


• Variance of n-step rollout is k(n). 




TD(λ)
Likelihood:


Maximizing the log likelihood:


this is the λ-return, where:


L → ∞



TD(λ)
Therefore, λ-return is the estimator you get given three 
assumptions:


• Normal distribution of return estimates.

• Independence of rollouts.

• Variance of rollouts increases geometrically with 

common ratio 1/λ.


All three of these assumptions are false. 




On Rollout Variance
Let’s let the first two slide, and consider the variance of an n-
step sample return:


First thing to notice:

• Variance increases from n-1 to n additively.

• We assume the covariance away.



New Variance Model
We obtain:


TD error at step n

We assume the TD error variance is the same everywhere, set 
its value to κ. 


Simple model of the variance of an n-step sample of return:



TDγ
Resulting estimator:


where


Parameter-free!



TDγ
Weighted sum:
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TDγ vs. TD(λ)
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The Catch

Normalizing constant is a function of episode length.

Differs for each state.

λ-return avoids this because it assumes episode is 
infinitely long, and sum of weights tends to a constant.



So:
TDγ kills λ and replaces TD(λ) if:


• We can be incremental episode-wise.

• We can process in a batch.


But not if we must be incremental transition-wise. 

• We impose capacity C.

• Use the first C rollouts.

• Normalizer not known, except for last C-1steps.



Results
Acrobot


Similar for another 4 domains.

• TDγ beats TD(λ) for any value of λ (4/5)

• Intermediate values of C do very well.




Future Work
Better model of the variance.

Model that affords a completely incremental implementation.


Other members of the TDγ family:

• LSTDγ
• Sarsaγ
• GQγ

Account for covariance: TD(Omega) 


