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Logistics
• Midterm Thursday or Friday - 3.5 hours timed

• No class Thursday

− Forum for AI talk on GT Sophy - Friday 11am

• Feedback on final project proposals coming

• Next step: literature surveys

− Build on proposal

• Next week’s readings

− Options and hierarchy
− No longer a textbook
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Ch.16: Applications and Case Studies

• Many more applications on resources page

• Skipped connections to:

− Ch.14 psychology
− Ch.15 neuroscience

• Ch.17 summarizes much of what’s to come



Context

• Srinivas Bangalore Seshadri: Elaborate on the quote
Applications of reinforcement learning are still far from
routine and typically require as much art as science.
Making applications easier and more straightforward is
one of the goals of current research in reinforcement
learning.
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Common Questions

• Doesn’t DQN meet conditions of deadly triad?

− Yes!
− So how is it stable?

• Clips TD-error to [-1,1]

• What is experience replay? Why use it?

− like Dyna
− allows the samples not to be strongly correlated

• DQN: How does using a target network help?

− Avoids chasing a moving target
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Other Common Questions

• How does stacking frames make Atari "more Markovian"?

• More detail on AlphaGo

− How does MCTS improve policy in AlphaGo Zero?

• Can you transfer real-world data to simulators?
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Other Interesting Questions

• Jordi Ramos Chen: Does Samuel’s checker-playing
program use a typical RL algorithm?

• Yancheng Du: How does a computer program play
Jeopardy? Can’t it have a big database of Q/A pairs
and/or look up the answer on Google?

• Caroline Wang: In self play, since the network knows what
side it’s playing, why doesn’t it learn losing moves for one
side?

• Zifan Xu: In self play, if there are many winning strategies,
how does it not get into a cycle?



Other Interesting Questions

• Yang Hu: AlphaGo requires supervised learning to
initialize the policy network, while AlphaGo Zero just uses
random weights to initialize the policy network. Intuitively,
supervised learning based on human knowledge should
be more helpful than random weighting. But the truth is
that AlphaGo Zero performs much better than AlphaGo.
Is it meaning that human knowledge on Go is actually not
correct at all?



Other Interesting Questions

• Yang Hu: AlphaGo requires supervised learning to
initialize the policy network, while AlphaGo Zero just uses
random weights to initialize the policy network. Intuitively,
supervised learning based on human knowledge should
be more helpful than random weighting. But the truth is
that AlphaGo Zero performs much better than AlphaGo.
Is it meaning that human knowledge on Go is actually not
correct at all?

− Sutton’s "The Bitter Lesson"
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