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Previously

Chapter 9 Policy Evaluation with Function Approximation
Chapter 10 On-policy Control with Approximation 
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Off-policy semi-gradient methods

Recap from Chapter 7, per-step importance sampling ratio:

Semi-gradient Expected Sarsa (for action values):

Episodic and discounted

Continuing and 
undiscounted

No importance sampling!



N-step Off-policy semi-gradient methods

Recap from Chapter 7, per-step importance sampling ratio:

N-step semi-gradient Expected Sarsa (for action values):

Episodic and discounted

Continuing and 
undiscounted

Importance sampling is back…



Reading Responses

[Karen Chen]
If function approximation is significantly more difficult for off-policy learning, 
what are cases where it's the most effective approach? Is the default to use 
on-policy learning with approximation?



Reading Responses

[Karen Chen]
If function approximation is significantly more difficult for off-policy learning, 
what are cases where it's the most effective approach? Is the default to use 
on-policy learning with approximation?
Off-policy learning is still useful because we can re-use data that we can’t 
with on-policy methods. 

Trade-off: is it cheaper to get on-policy samples or deal with the instability of 
off-policy learning?



The deadly triad

Divergence is possible when all 3 parts of the deadly triad are present:

• Function approximation

• Bootstrapping

• Off-Policy training

Scott’s slide



Off-policy semigradient methods

Stability of semigradient methods depends on on-policy distribution of updates.  Why?

• In tabular case, updating one state’s value leaves all others changed

Imagine only updating one state S over and over again (i.e. off-policy):

• With function approx + MC, multiple state values are updated, but 
V(S) is estimated independently of them via rewards only

• With function approx + TD (semigradient), multiple values are updated, 
which are then used to help estimate V(S) via bootstrapping, which are 
then updated again, which are then used to help estimates V(S)…

On-policy distribution forces state values to be “grounded” to something real
Scott’s slide



Examples of Off-policy Divergence
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I’m confused why bootstrapping is part of the deadly triad. Why could a 
problem converge with monte carlo, but not with some bootstrapping 
method? Is it because the estimate Ut is dependent upon the weights? I 
thought that just meant we could only guarantee convergence to a local 
minima.



Reading Responses

[Troy Dutton]
I’m confused why bootstrapping is part of the deadly triad. Why could a 
problem converge with monte carlo, but not with some bootstrapping 
method? Is it because the estimate Ut is dependent upon the weights? I 
thought that just meant we could only guarantee convergence to a local 
minima.
Monte Carlo means we’re updating only with real rewards, not value 
estimates, which bounds our error. With bootstrapping we get runaway 
growth.



Baird’s Counterexample
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of policy choices in function approximation settings?
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[Krystal An]
In the Fig.11.1 How does the behavior policy b contribute to the divergence 
in Baird's counterexample, and what does this imply about the importance 
of policy choices in function approximation settings?
Divergence occurs because our target policy concentrates on the bottom 
state while DP updates all states uniformly. These policies are not the same, 
and hence DP gives an off-policy update. If we updated according to the 
current policy, we would converge.





[Saloni Modi]
Is there a reason we have empirical evidence but no theoretical analysis for 
why Q-learning doesn't diverge when the behavior policy is sufficiently 
close to the target policy (ex: when it's the epsilon-greedy policy) (referring 
to page 263, section 11.2)?

Reading Responses



[Saloni Modi]
Is there a reason we have empirical evidence but no theoretical analysis for 
why Q-learning doesn't diverge when the behavior policy is sufficiently 
close to the target policy (ex: when it's the epsilon-greedy policy) (referring 
to page 263, section 11.2)?
Not necessarily! 

Reading Responses





Scott’s slide

Orthogonal Projection

x
: u
:
:

µPaxProjection to a unit vector : Pu -

- wut

So : Pax = wut X



Scott’s slide

Orthogonal Projection

x
: u
:
:

µ
Pax

Projection to a unit vector : Pu -

- wut

So : Pax = uutx

Why ?

utx = 11×11 cosOUUTXis a vector of magnitude 11×11 cos O

in the direction of U



Scott’s slide

Orthogonal Projection

x
:

.

.

U More Generally :
:

µ
Pax if A  = ( u

,
. -

. Uk) is an orthonormal
basis of the Subspace U

,
then :

Projection to a unit vector : Pu -

- wut Pa -

- AAT

So : Pax = UUTX U
,

Why ?

utx .

.

mucosa

UUTX is a vector of magnitude HXH cos O - u
,

in the direction of U



Scott’s slide

Orthogonal Projection

x
:

.

.

U More Generally :
:

µ
Pax if A  = ( u

,
. -

. Uk) is an orthonormal
basis of the Subspace U

,
then :

Projection to a unit vector : Pu -

- wut Pa -

- AAT

So : Pax = UUTX U
,

Why ?

utx .

.

mucosa

UUTX is a vector of magnitude 11×11 cos O - u
,

in the direction of U

what if u
,

. .  - Ure not orthonormal ?

Pa = A ( ATA )
' ' AT

-

normalizing
factor



Scott’s slide

Orthogonal Projection

x
:

.

.

U More Generally :
:

µ
Pull if A  = ( u

,
. -

. Uk) is an orthonormal
basis of the Subspace U

,
then :

Projection to a unit vector : Pu -

- wut Pa -

- AAT

So : Pax = UUTX U
,

Why ?

utx .

.

mucosa

UUTX is a vector of magnitude 11×11 cos O - u
,

in the direction of U

what if u
,

. .  - Ure not orthonormal ? What about other inner products ?

Pa = A ( ATA )
' ' AT Pa -

- ACA 'D A)
"

ATD

- v
normalizing Lx

, y > =  

YTDX

factor



Scott’s slide

Orthogonal Projection

x
:

.

.

U More Generally :
:

µ
Pull if A  = ( u

,
. -

. Uk) is an orthonormal
basis of the Subspace U

,
then :

Projection to a unit vector : Pu -

- wut Pa -

- AAT

So : Pax = UUTX U
,

Why ?

utx .

.

mucosa

/
UUTX is a vector of magnitude HXH cos O - u

,

in the direction of U

what if u
,

. .  - Uk not orthonormal ? What about other inner products ?

Pa = A ( ATA )
' ' AT Pa -

- ACA 'D A)
"

ATD
Linear regression

:

Emailing ixxy Lx,y¥iDx
factor



Linear Value-Function Geometry



Given two value functions, the vector difference: 

Linear Value-Function Geometry



Given two value functions, the vector difference: 

Linear Value-Function Geometry

But not all states are considered equal! Taking into account on-policy 
distribution:



Given two value functions, the vector difference: 

Linear Value-Function Geometry

But not all states are considered equal! Taking into account on-policy 
distribution:

Mean Squared Value Error (from Ch 9.2):



Given two value functions, the vector difference: 

Linear Value-Function Geometry

But not all states are considered equal! Taking into account on-policy 
distribution:

Mean Squared Value Error (from Ch 9.2): Solution found by 
Monte Carlo! (Slow)



Linear Value-Function Geometry

TD methods:



Linear Value-Function Geometry

TD methods:

Bellman error:

Bellman error is expectation of TD error!



Linear Value-Function Geometry

TD methods:

Bellman error:

Mean Squared Bellman Error:



Linear Value-Function Geometry

Intermediate value functions lie outside the subspace we can represent.

Mean Squared Projected Bellman error:



Reading Responses

[Jiaheng Hu]
It is relatively well-known that DQN is not guaranteed to converge but Q-
learning is. Do we have any understanding about what kind of function 
approximations can converge and what cannot? It sounds like there might be 
some middle ground where the function approximation is more powerful 
than the tabular case, but restricted such that convergence is still guaranteed?
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[Jiaheng Hu]
It is relatively well-known that DQN is not guaranteed to converge but Q-
learning is. Do we have any understanding about what kind of function 
approximations can converge and what cannot? It sounds like there might be 
some middle ground where the function approximation is more powerful 
than the tabular case, but restricted such that convergence is still guaranteed?
Showed that linear cannot. More powerful function approximation seems like 
it would help, but we don’t know how to think about the “geometry” 
anymore.
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[Jeffrey Lai]
What are some partial modern solutions to avoid the deadly triad? It seems 
like function approximation and bootstrapping are essential to practical 
problems but are there ways to independently address either of these to 
alleviate their negative interaction?
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[Jeffrey Lai]
What are some partial modern solutions to avoid the deadly triad? It seems 
like function approximation and bootstrapping are essential to practical 
problems but are there ways to independently address either of these to 
alleviate their negative interaction?
Prevent extrapolation outside data support: 
1. regularization to keep policy close to behavior policy (mitigating off-

policy)
2. suppress out-of-distribution value estimates (mitigating bootstrapping)
3. Powerful function approximation (to keep BE and PBE close)



Reading Responses

[Jasper Lee]
Section 11.4 mentions several different types of errors that different 
algorithms try to minimize. Can anything be said about which types of errors 
are better to minimize in practice for which types of RL problems? Or is 
everything still in the air?
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[Jasper Lee]
Section 11.4 mentions several different types of errors that different 
algorithms try to minimize. Can anything be said about which types of errors 
are better to minimize in practice for which types of RL problems? Or is 
everything still in the air?
What error we’re minimizing is dictated by what method we’re using. 
Typically it’s TD error because Monte Carlo is too slow.



Next week: 
Chapter 12: Eligibility Traces
Reading assignments due 2PM Monday

Office hours:
Mon: Michael 1-2PM GDC Basement TA Station #5
Tues: Caroline 11:15-12:15PM 
Wed: Amy 2-3PM EER 6.878
Thurs: Haoran 11-12PM; Siddhant 5-6PM
Fri: Shuozhe 4-5PM

Final Logistics



Final project proposal due at 11:59pm on Thursday, 3/7

Complete Homework for Chapters 10+11 on edx by Friday 11:59 PM CST

Complete Programming Assignment for Chapters 4,5,6,7 on edx by Sunday at 
11:59 PM CST

Final Logistics


