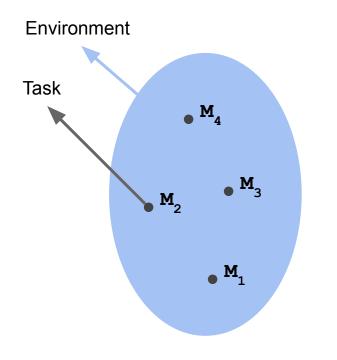

Successor Features for Transfer in Reinforcement Learning

André Barreto Will Dabney Rémi Munos Jonathan Hunt Tom Schaul David Silver Hado van Hasselt

Poster #9 at Pacific Ballroom


Transfer in Reinforcement Learning

- Goal: general framework for transfer in RL
- Fundamental design principles:
 - Exchange of information should take place whenever useful
 - Transfer should be seamlessly integrated within the RL process

Problem definition

- Environment is a **set** of MDPs
- Each MDP M_i is a **task**
- The only difference between the MDPs is the **reward function** r_i:

$$r_i(s, a, s') = \boldsymbol{\phi}(s, a, s')^\top \mathbf{w}_i$$

Proposed solution

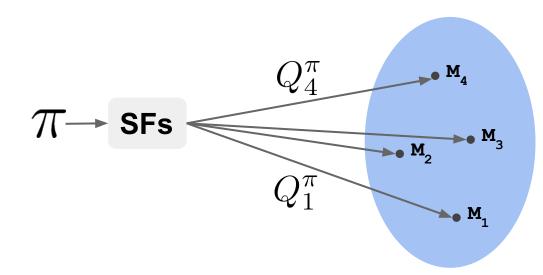
Our solution builds on two ideas:

- Generalised policy improvement (GPI)
- Successor features (SFs)

Generalised policy improvement

For a fixed reward function:

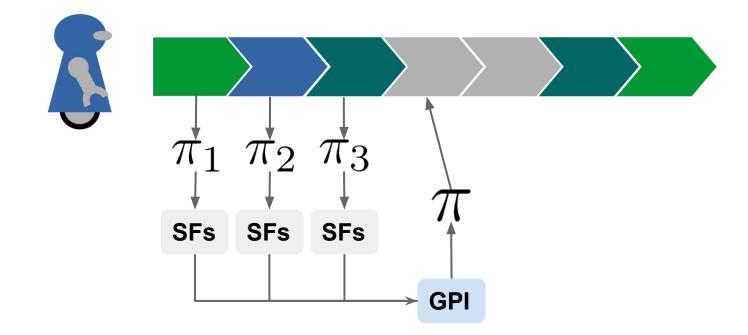
$$\begin{array}{c} \pi_1 \to Q^{\pi_1} \\ \pi_2 \to Q^{\pi_2} \\ \vdots \\ \pi_n \to Q^{\pi_n} \end{array} \right\} \mathbf{GPI} \twoheadrightarrow \pi, \text{ such that } Q^{\pi} \ge Q^{\pi_i}$$


Generalised policy improvement

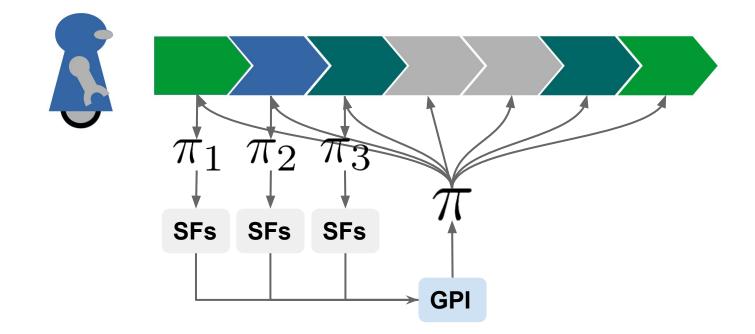
For a fixed reward function:

$$\begin{array}{c} \pi_{1} \rightarrow Q^{\pi_{1}} \\ \pi_{2} \rightarrow Q^{\pi_{2}} \\ \vdots \\ \pi_{n} \rightarrow Q^{\pi_{n}} \end{array} \end{array} \right\} \begin{array}{c} \operatorname{\mathsf{GPI}} \rightarrow \pi, \text{ such that } Q^{\pi} \geq Q^{\pi_{i}} \\ \hline \pi(s) \in \operatorname{argmax}_{a} \max_{i} Q^{\pi_{i}}(s, a) \end{array}$$

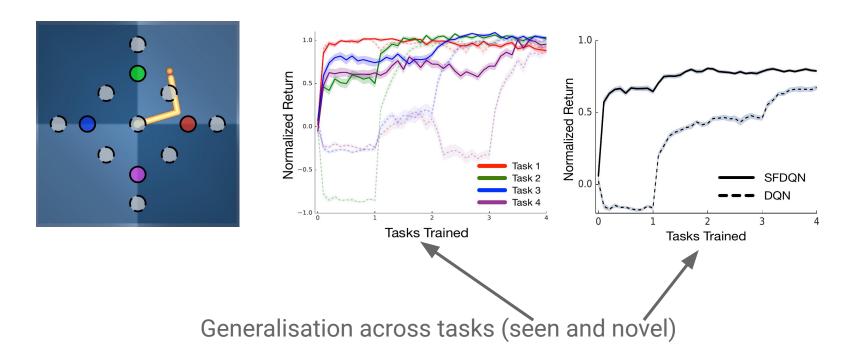
Successor Features



Successor Features Q_4^{π} • M_ $\pi \rightarrow SFs$ • M₃ ▶• M₂ \sum_{1}^{π} • M₁ $\psi^{\pi}(s,a) = \operatorname{E}\left[\phi(s,a,S') + \gamma\psi^{\pi}(S',\pi(S'))\right]$ $Q^{\pi}(s,a) = \psi^{\pi}(s,a)^{\top} \mathbf{w}$



SFs + GPI



SFs + GPI

SFs + GPI



Successor Features for Transfer in Reinforcement Learning

André Barreto Will Dabney Rémi Munos Jonathan Hunt Tom Schaul David Silver Hado van Hasselt

Poster #9 at Pacific Ballroom

