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Global Goal

Global Representation

Global Path

Local Representation

Motion Commands

Robot (Parameters, Planners, Models)

Perceptual Input 

The classical navigation problem: moving a robot from one point to another without collision with any obstacle 

Local Goal

[Xiao et al., AuRo22]
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Global Goal

Global Representation

Global Path
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Motion Commands

Robot (Parameters, Planners, Models)

Perceptual Input 

The classical navigation problem: moving a robot from one point to another without collision with any obstacle 

Local Goal

[Xiao et al., AuRo22]
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Classical Navigation vs. End-to-End Learning

Strengths of classical navigation: 

● Verifiable safety assurance 
● Explainable components for debugging 
● Generalizability to different scenarios

Weaknesses of classical navigation: 

● Requires extensive engineering effort 
● System performance won’t improve without manual intervention 
● Propagation of errors through multiple components 
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Highly-Constrained Environments
[Xiao et al., RA-L21]

Normal Environment
[Pfeiffer et al., RA-L18]

vs.

Learning navigation in highly constrained spaces
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○ Classical motion planners require increased computation.
■ Sampling-based methods require more samples to generate feasible 

motion. [Kavraki et al., TRA96, Fox et al., RAM97, LaVelle, TechReport98]
■ Trajectory-optimization-based methods require more optimization 

iterations. [Quinlan et al., 93, Zucker et al., IJRR13, Zhou et al,. RA-L21]

○ Learning-based planners suffer from lack of good-quality training data. 
■ Demonstration is difficult to acquire for Imitation Learning. [Pfeiffer et al., 

ICRA17, Tai et al., IROS16]
■ Trial-and-error is expensive for Reinforcement Learning. [Tai et al., IROS17, 

Chiang et al., RA-L19]

Learning navigation in highly constrained spaces



Challenge: 
https://www.cs.utexas.edu/~xiao/BARN_Challenge/
BARN_Challenge.html

Dataset: 
https://www.cs.utexas.edu/~xiao/BARN/BARN.html
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https://www.cs.utexas.edu/~xiao/BARN_Challenge/BARN_Challenge.html
https://www.cs.utexas.edu/~xiao/BARN_Challenge/BARN_Challenge.html
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Learning navigation in highly constrained spaces

● Adaptive Planner Parameter Learning (APPL)
○ Learning local planners’ parameters
○ Learning from non-expert humans using different interaction modalities

 

● Learning from Hallucination (LfH)
○ Learning a local planner 
○ Learning from self-supervised experiences
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Adaptive Planner Parameter Learning (APPL)

Robots need to face entirely different 
obstacle configurations. 

Classical navigation systems require expert 
roboticists to fine-tune planner parameters. 

max_vel_x: 0.5
min_vel_x: 0.1
max_vel_theta: 1.57
min_vel_theta: -1.57
vx_samples: 6
vtheta_samples: 20
occdist_scale: 0.1
pdist_scale: 0.75
gdist_scale: 1.0
Inflation_radius: 0.30
......
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Adaptive Planner Parameter Learning (APPL)

Inspiration: Most humans are not robotics experts, but they are navigation experts. 
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Teleoperated 
Demonstration

Corrective 
Interventions

Evaluative 
Feedback

Reinforcement 
Learning

http://www.youtube.com/watch?v=u2xxPTZA0DY&t=123
http://www.youtube.com/watch?v=aRAJ1Dl69gI&t=19
http://www.youtube.com/watch?v=qIstZxVBmIQ&t=29
http://www.youtube.com/watch?v=JKHTAowdGUk&t=55


In Navigation Language… 

16[ROS move_base]



In Learning Language… 
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[Gao et al., CoRL17, Pfeiffer et al., ICRA17, 
Chiang et al., RA-L19, Xiao et al., RA-L21]

[Xiao et al., RA-L20, Wang et al., ICRA21, Wang 
et al., RA-L21, Xu et al., ICRA21]



APPL from Human Interactions [Xiao et al., RAS22]
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Adaptive Planner Parameter Learning from Demonstration 
(APPLD) [Xiao et al., RA-L20]
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APPLD imposes an internal structure to the general parameter policy 

Context 
Predictor

Parameter 
Library

State Context Param.



Adaptive Planner Parameter Learning from Demonstration 
(APPLD) [Xiao et al., RA-L20]
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Context Predictor:

2. Perform automatic segmentation 
(e.g., using CHAMP [Niekum et al. ICRA15])

1. Collect demonstration

3. Train online context predictor 



Adaptive Planner Parameter Learning from Demonstration 
(APPLD) [Xiao et al., RA-L20]
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Parameter Library: For each context, use behavior cloning to construct each 
element of the parameter library 

Behavioral Cloning: Learn parameters from a demonstration using supervised 
learning.

max_vel_x: 0.5
min_vel_x: 0.1
max_vel_theta: 1.57
min_vel_theta: -1.57
vx_samples: 6
vtheta_samples: 20
occdist_scale: 0.1
pdist_scale: 0.75
gdist_scale: 1.0
Inflation_radius: 0.30
......



Adaptive Planner Parameter Learning from Demonstration 
(APPLD) [Xiao et al., RA-L20]
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Adaptive Planner Parameter Learning from Demonstration 
(APPLD) [Xiao et al., RA-L20]
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http://www.youtube.com/watch?v=J9AWQWVrjJU


APPL from Human Interactions [Xiao et al., RAS22]
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Adaptive Planner Parameter Learning from Interventions 
(APPLI) [Wang et al., ICRA21]
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Robots do not behave suboptimally everywhere: Intervention when necessary

Ctx. 
Pred.

Param. 
Library

State
Context Param.

Confident?
Y

N
Default 
Param.



Adaptive Planner Parameter Learning from Interventions 
(APPLI) [Wang et al., ICRA21]
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1. Collect (naturally segmented) 
interventions 

3. Behavior clone parameters for each intervention

Context Predictor:

Parameter Library

2. Train context predictor with 
Evidential Deep Learning (EDL) 
[Sensoy et al. NeurIPS18]



APPL from Human Interactions [Xiao et al., RAS]
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Adaptive Planner Parameter Learning from Evaluative 
Feedback (APPLE) [Wang et al., RA-L21]

2828

Non-expert users may not be able to take control of the robot: Evaluative feedback

Feedback 
Predictor

Parameter 
Library

State
Best 

Feedback Param.

Discrete APPLE



Discrete Adaptive Planner Parameter Learning from 
Evaluative Feedback (APPLE) [Wang et al., RA-L21]
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Feedback Predictor:

Existing Parameter Library (from default, manually tuned, APPLD, APPLI, etc.)

1. Collect feedback set

2. Train feedback predictor 

3. Deploy parameter policy 



Adaptive Planner Parameter Learning from Evaluative 
Feedback (APPLE) [Wang et al., RA-L21]
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Non-expert users may not be able to take control of the robot: Evaluative feedback

Policy Network

State Parameters

Continuous APPLE



Continuous Adaptive Planner Parameter Learning from 
Evaluative Feedback (APPLE) [Wang et al., RA-L21]
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Policy Network:

Parameter Space instead of Parameter Library

Train in actor-critic style

Actor

Critic



APPL from Human Interactions [Xiao et al., RAS22]
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Adaptive Planner Parameter Learning from Reinforcement 
(APPLR) [Xu et al., ICRA21]

3333

What about no humans at all?

Policy Network

State Parameters

APPLR

Reinforcement Learning 

Benchmark Autonomous Robot Navigation (BARN) Dataset 
[Perille et al., SSRR21]



Adaptive Planner Parameter Learning from Reinforcement 
(APPLR) [Xu et al., ICRA21]
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Optimization Objective: 

Reward Design: 



APPL from Human Interactions [Xiao et al., RAS22]
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Cycle-of-Learning from APPL [Xiao et al., RAS22]
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[Xu et al., ICRA21]

[Wang et al., RA-L21]

[Xiao et al., RA-L20]

[Wang  et al., ICRA21]
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