
How to Specify Aligned
Reinforcement Learning

Problems
Brad Knox

Outline
1. Aligned reward functions
2. Finding misalignment in a reward function
3. Misalignment by shaping
4. Misalignment by trial-and-error design
5. Misalignment by discounting
6. Designing aligned reward functions
7. What should we work towards?

Aligned reward functions

Sequential Decision-Making

environment
(state)

agent

actionobservation

observation action observation action observation action
...

time 0 time 1 time 2

o0 , a0 o1 , a1 o2 , a2 o3 , a3

GOAL

Gridworld

o0 , a0 o1 , a1 o2 , a2 o3 , a3

States: cell location

Actions: move in each cardinal
direction

Sequential Decision-Making

State: board configuration

Action: a legal move

o0 , a0 o1 , a1 o2 , a2 o3 , a3

Sequential Decision-Making

Observation: joint positions, joint
velocities, and a camera image of
its task area

Action: acceleration on each joint

o0 , a0 o1 , a1 o2 , a2 o3 , a3

Sequential Decision-Making

Reinforcement learning

environment
(state)

agent

actionobservation,
reward

observation action observation action observation action
r0 r1 r2

...

time 0 time 1 time 2

o0 , a0 o1 , r1 , a1 o2 , r2 , a2 o3 , r3 , a3

An RL algorithm tries
to learn behavior that
increases its
long-term
accumulation of
reward.

Trajectory τ

GOAL

Gridworld State: cell location

Action: move in each cardinal
direction

Reward: -1 per time step / action

Reinforcement learning

o0 , a0 o1 , r1 , a1 o2 , r2 , a2 o3 , r3 , a3

State: board configuration

Action: a legal move

Reward: 1 upon winning, 0 otherwise
(assume no stalemates)

Reinforcement learning

o0 , a0 o1 , r1 , a1 o2 , r2 , a2 o3 , r3 , a3

REWARD AND RETURN

return reward

REWARD AND RETURN

reinf. learning
motion planning
control theory
evolutionary algs.
utility theory
optimization
-
-

return
-1 × cost
-1 × cost
fitness
utility
objective function*
performance metric
score

reward
-1 × cost
-1 × cost
-
-
-
-
-

Field

* “objective function” more precisely refers to the expectation of G(τ)

REWARD
AND
RETURN

return reward

EXPECTED RETURN
(Implicit in the expectation is the distribution over
start states and state transitions.)

discount
factor

REWARD
AND
RETURN return reward

EXPECTED RETURN
(Implicit in the expectation is the distribution over
start states and state transitions.)

discount
factor

A more precise characterization of RL:
attempt to find a behavior policy π that maximizes expected return.

Rewards vs goals

Problems that can
expressed with

rewards

Problems that
can expressed

with goals

Main alternatives to RL problems

● Learning from demonstrations (imitation
learning)

● Learning from preferences (RLHF, RLAIF, DPO,
CPL, etc.)

Learning an intermediate reward function and
doing RL on it is not the only way to these
methods.

BACKGROUND ON REWARD

RL oversimplified: a set of problems and corresponding algorithmic
solutions, in which experience in a task is used to improve an agent’s
behavior such that it gets more reward.

More specifically, most RL problems focus on increasing the expectation of
G(τ), the utility of a trajectory:

(Assumes undiscounted/episodic setting and an unstated distribution over
starting states)

An aligned reward function

A reward function creates a preference ordering over possible
trajectories (by) and probability distributions over trajectories.

These trajectories can simplified to only the outcomes that matter
(e.g., winning/losing or time until reaching a goal.)

We assume humans also have such an ordering.

A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.

An aligned reward function

τcrash

τidle

τsucces

s
Best

Worst

A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.

An aligned reward function

τcrash

τidle

τsucces

s
Best

Worst

A perfectly aligned reward function creates an ordering over
outcome distributions that matches that of the human
stakeholder.

ReturnHuman stakeholder

10

-50

0

An aligned reward function?

τcrash

τidle

τsuccess Best

Worst

Expected returnHuman stakeholder

10

-50

0

Lottery: 90% τsuccess, 10% τcrash

An aligned reward function?

τcrash

τidle

τsuccess Best

Worst

Expected returnHuman stakeholder

10

-50

0

Lottery: 90% τsuccess, 10% τcrash 4

An aligned reward function?

τcrash

τidle

τsuccess Best

Worst

Expected returnHuman stakeholder

10

-50

0

Lottery: 90% τsuccess, 10% τcrash 4

Mismatched
with human
ordering!

Design a reward function

GOAL

Gridworld State: cell location

Action: move in a cardinal direction

The agent's purpose is to reach the goal in the
minimum mean time from any state.

Design a reward function by designating what the
reward should be for each action from each cell (state).

There is no discounting and the goal state is terminal
(or transitions to absorbing state, if you prefer).

Design a reward function

GOAL

Gridworld An aligned reward function

 -1 reward until goal

The return is the time to goal (* -1).
The expected return is the mean time to goal (* -1).
So the task is to minimize the mean time to goal.

Design a reward function

GOAL

Gridworld A misaligned reward function

 1 reward for an action towards the goal
 0 reward otherwise

The return is the number of goal-approaching actions.
The expected return is the mean number of
goal-approaching actions.
So the task is to maximize the mean number of
goal-approaching actions.

Design a reward function

GOAL

Gridworld A misaligned reward function

 1 reward for an action towards the goal
 0 reward otherwise

The return is the number of goal-approaching actions.
The expected return is the mean number of
goal-approaching actions.
So the task is to maximize the mean number of
goal-approaching actions.

Will an agent that's maximizing its expected return terminate?

Design a reward function

GOAL

Gridworld A misaligned reward function

 0 reward for an action towards the goal
-1 reward otherwise

The return is the number of suboptimal actions (* -1).
The expected return is the mean number of
suboptimal actions (* -1).
So the task is to minimize the mean number of
suboptimal actions.

Design a reward function

GOAL

Gridworld A misaligned reward function

 0 reward for an action towards the goal
-1 reward otherwise

The return is the number of suboptimal actions (* -1).
The expected return is the mean number of
suboptimal actions (* -1).
So the task is to minimize the mean number of
suboptimal actions.

What if the goal is moved?
What if you misunderstood which actions go to the goal?

AI safety terminology

Precise definitions couldn't be found, so my versions:

outer alignment - the problem given to an AI optimizer to
solve is aligned

● regardless of whether the resultant solution is aligned
in practice

outcome-based learning - optimizing decisions based on
future rewards or goals

Is RL unfixably unsafe?
"Giving an advanced AI system the
objective to maximize its reward (LTPAs)..."
leads to concerns that include reward
tampering, removing humans as obstacles
to reward, and power seeking.

"both safety and validity cannot be ensured
when testing sufficiently capable LTPAs"

"Developers should not be permitted to
build sufficiently capable LTPAs, and the
resources required to build them should
be subject to stringent controls."

Is RL unfixably unsafe?

"If dangerously capable LTPAs are at
some point permitted to be developed,
rigorous technical and regulatory work
would need to be done first..."

This talk covers such work.

Observation: prompt + any previous text

Action: n-token response

Reward: ???

environment
(human)

agent
(LM)

action
(response)

observation
(prompt)

Is RL impactful?

o0 , a0 o1 , r1 , a1 o2 , r2 , a2 o3 , r3 , a3

Observation: prompt + any previous text

Action: n-token response

Reward: ???

Here, demonstrations and preferences are used.
The "reward function" from RLHF is not a
reward function in they way we normally use
the concept. environment

(human)

agent
(LM)

action
(response)

observation
(prompt)

Is RL impactful?

o0 , a0 o1 , r1 , a1 o2 , r2 , a2 o3 , r3 , a3

RL has often had a stigma of not yet working well for important problems. It
has had some large successes though. A few:

● Games: Go, Chess, Poker, and Starcraft
● Data center cooling
● RL as search (LLM fine-tuning and AlphaFold)

Learning from long-horizon reward is harder to wield than learning from
demonstrations and preferences.

Nonetheless, a well-formulated RL problem has the potential to lead to
performance far beyond what humans can demonstrate or identify through
preferences.

environment
(human)

agent
(LM)

action
(response)

Is RL impactful?

The set of optimal policies is invariant to rescaling of
the reward function.

The set of optimal policies is invariant to shifts of the
reward function if...

from each state, all possible trajectories have the same length

Includes continuing and finite horizon tasks.

Does not include typical episodic tasks, such as those with goal or failure states.

A change in perspective

Reward from the perspective of an RL algorithm ← the familiar perspective

An agent conducting policy improvement continually searches for policies that
get higher mean return.

We start zoomed in and zoom out from there:

● Agent is a pursuer of reward.
● Agent estimates expected return from the reward it has experienced.
● Agent identifies actions (more precisely, changes in policy) that will increase

estimated expected return.

Image modified from CC 2.0 license (source)

https://commons.wikimedia.org/wiki/File:Pacman_stub.svg

A change in perspective

Reward from the perspective of an RL algorithm ← the familiar perspective

An agent conducting policy improvement continually searches for policies that
get higher mean return.

We start zoomed in and zoom out from there:

● Agent is a pursuer of reward.
● Agent estimates expected return from the reward it has experienced.
● Agent identifies actions (more precisely, changes in policy) that will increase

estimated expected return.

Image modified from CC 2.0 license (source)

https://commons.wikimedia.org/wiki/File:Pacman_stub.svg

A change in perspective

A reward-centric perspective of policies

The choice of the reward function and discounting create an ordering over
policies—given a start-state distribution—via their expected returns and over full
trajectories.

Each change in a reward function may rearrange this ordering by changing each
policy's expected return.

Learning is not a consideration.

π π π π π π

Ordering by expected return:

> > > > >

Consider designing for interpretable return.

Two highly common reward functions have interpretable return.

reward function: -1 reward until goal
The return is the time to goal (* -1).
The expected return is the mean time to goal (* -1).
So the task is to minimize the mean time to goal.

reward function: 0 upon losing, 1 upon winning, and 0 otherwise
The return is a binary indicator of winning.
The expected return is the probability of winning.
So the task is to maximize the probability of winning.

CC 2.0 license (source)

https://commons.wikimedia.org/wiki/File:Go_game.jpg

Finding Misalignment in a Reward
Function

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf,
Felix Schmitt, and Peter Stone. Reward (Mis)design
for Autonomous Driving. AIJ 2023.

Let
• τcrash be a drive that is successful until crashing halfway to

its destination and

• τidle be the safe trajectory of a vehicle choosing to stay
motionless where it was last parked.

If all human stakeholders agree that trajectory τA is preferable to τB
(i.e., τA ≻ τB), then return of τA > return of τB should hold.

τcrash

τidle

FIND MISMATCHES IN PREFERENCE ORDERINGS
(The most powerful method I'm aware of.)

http://www.cs.utexas.edu/~pstone

start

Rewarding two drives

+1
progress!

idle
+0

Rewarding two drives

+1 +1
progress!

idle
+0 +0

Rewarding two drives

+1 +1 +1
progress!

idle
+0 +0 +0

Rewarding two drives

+1 +1 +1 +1
progress!

idle
+0 +0 +0 +0

Rewarding two drives

+1 +1 +1 +1 -1
crash!

idle
+0 +0 +0 +0 +0

Rewarding two drives

Rewarding two drives

+1 +1 +1 +1 -1 = +3

idle
+0 +0 +0 +0 +0 = 0

+1 +1 +1 +1 -1 = +3

idle

The reward function prefers this drive!!

+0 +0 +0 +0 +0 = 0

Rewarding two drives

Published reward functions
for autonomous driving

19 papers reviewed
10 exhaustively characterized

Navigating Occluded Intersections
with Autonomous Vehicles using
Deep Reinforcement Learning

[Isele et al., 2018]

Unweighted sum of 3 attributes:
- 0.01 for every step
- 10 if a collision occurred

(0 otherwise)
+ 1 when the agent successfully

reaches the destination
beyond the intersection
(0 otherwise)

Deep Distributional
Reinforcement Learning Based

High-Level Driving Policy
Determination [Min et al., 2019]

Unweighted sum of 4 attributes:
 + (v-40)/40, where v is

speed in km/h within the
allowed range [40,80] km/h

 - 10 if the ego vehicle collides
(0 otherwise)

 + 0.5 if the ego vehicle
overtakes another vehicle (0
otherwise)

 - 0.25 if the ego vehicle
changes lane (0 otherwise)

CARLA: An open urban driving
simulator [Dosovitskiy et al., 2017]

Weighted sum of 5 attributes:
 r =(1)Δd +(0.05)Δv
 + (−2*10−6)Δc + (−2)Δs
 + (2)Δo

• Δd, the change in distance along the
shortest path from start to goal

• Δv, the change in speed in km/h
• Δc, the change in collision damage

expressed in range [0,1]
• Δs, the change in the proportion of

the ego vehicle overlapping with the
sidewalk

• Δo, the change in the proportion of
the ego vehicle overlapping with the
sidewalk

Learning hierarchical behavior and
motion planning for autonomous

driving [Wang et al., 2020]

Defined separately:
• For transitions to terminal states,

one of the following:
+ 100 if the goal was reached
- 50 upon a collision or running

out of time
- 10 for a red-light violation
- 1 if the ego vehicle is in the

wrong lane

• For transitions to non-terminal
states, unweighted sum of 3 attr.:
- Σ

t
t2[v

ref
-v(t)] / Σ

t
t2,

which rewards speeds close to the
desired speed

- 1 / [1 + Σ
t
|v(t)|, which

rewards based on distance traveled
+ Σ

t
[0.02*d

olon
(t)

 + 0.01*d
olat

(t)],
 which rewards keeping larger

distances

Pa
pe

r
R

ew
ar

d
Fu

nc
tio

n
A SAMPLING OF PUBLISHED REWARD FUNCTIONS

FIND MISMATCHES IN PREFERENCE ORDERINGS
(The most powerful method I'm aware of.)

W. Bradley Knox, Alessandro Allievi, Holger
Banzhaf, Felix Schmitt, and Peter Stone.
Reward (Mis)design for Autonomous
Driving. AIJ 2023.

7 of 9 reward functions* incorrectly prefer τcrash.

*9 exhaustively characterized papers’ reward functions allow this analysis

τcrash

τidle

http://www.cs.utexas.edu/~pstone

Let τdest be a trajectory that successfully reaches the destination.
τcrash ≺ τidle ≺ τdest .

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

τcrash

τidl

e τdes

t

Option A Option B

p

1 - p

P(τ)

Let τdest be a trajectory that successfully reaches the destination. τcrash ≺
τidle ≺ τdest .

If τA ≺ τB ≺ τC, then there is some probability p such that
 .

p is the indifference point.

For each R, we calculate p, then convert it to km per collision at the
indifference point.

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

[Ise18]

[Cai19]

Drunk US 16–17 US 50–60

US 16–17

[Wan20]
[Che19]
[Dos17]
[Min19]
[Lia18]
[Jar18]*
[Tor20]

τcrash ≻ τidle

km per collision

Sanity check failure 3: UNDESIRED RISK
TOLERANCE VIA INDIFFERENCE POINTS

Indifference points for collision frequency

0.1 1 10 100 1000 10000 100000

km per collision

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

US 50–60

km per collision

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

US 50–60

US 16–17

km per collision

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

Drunk US 16–17 US 50–60

US 16–17

km per collision

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

Drunk US 16–17 US 50–60

US 16–17

km per collision

Indifference points for collision frequency

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

Drunk US 16–17 US 50–60

US 16–17

km per collision

[Cai19]

Indifference points for collision frequency

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

[Ise18]

[Cai19]

Drunk US 16–17 US 50–60

US 16–17

km per collision

Indifference points for collision frequency

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

0.1 1 10 100 1000 10000 100000

[Ise18]

[Cai19]

Drunk US 16–17 US 50–60

US 16–17

[Wan20]
[Che19]
[Dos17]
[Min19]
[Lia18]
[Jar18]*
[Tor20]

τcrash ≻ τidle

km per collision

Indifference points for collision frequency

FIND UNDESIRED RISK TOLERANCE VIA
INDIFFERENCE POINTS

OTHER GOTCHAS

● Clipping
○ Example: -1,000,000 for collision, +1 for reaching the

destination
● Learnable loopholes

○ when an agent increases its utility/return through behavior
that decreases its performance in the eyes of its designer(s)

● Redundant attributes

Missing attributes → negative side effects

Amodei et al., 2016

MINOR SANITY CHECK FAILURES (5–8)

Identify any of these red flags:

Incomplete description of the problem specification in research
presentations

■ [Speculation] missing details in a paper indicate not considering
reward design to be a critical component of the research project

■ 9 of 10 exhaustively characterized papers lacked details of their
problem specification (that were learned via our correspondence
with their authors)

Misalignment by Shaping

Reward shaping, def. – in addition to the true/environmental
reward, providing reward to aid learning, e.g., by providing
behavioral hints or heuristics

In practice, most RL problems only have one, shaped reward
function. 😱

REWARD SHAPING

What leaders in AI say
Russell and Norvig: “As a general rule, it is better to design performance metrics
according to what one actually wants to be achieved in the environment, rather than
according to how one thinks the agent should behave.”

Sutton and Barto agree in almost the same phrasing, adding that imparting knowledge
about effective behavior is better done via the initial policy or initial value function.

—

My version: Specify how to measure outcomes, not how to achieve them.

I.e., in general, don’t shape rewards.

REWARD SHAPING

What leaders in AI say
Russell and Norvig: “As a general rule, it is better to design performance metrics
according to what one actually wants to be achieved in the environment, rather
than according to how one thinks the agent should behave.”

Sutton and Barto agree in almost the same phrasing.

—

My version: Specify how to measure outcomes, not how to achieve them.

I.e., in general, don’t shape rewards.

REWARD SHAPING

“Safe” reward shaping
Safety here means that the reward shaping will not change the optimal policy
(or ordering over policies).

Some specific methods for reward shaping are safe (under some assumptions),
but their desirability is still controversial.

If no effort is made to establish that an instance of reward shaping is safe, then
it’s unsafe.

REWARD SHAPING

● As a sub-algorithm controlled by an alg with
unshaped reward or fitness function

SAFE REWARD SHAPING METHODS

"Safe" here means that the reward shaping will not change the optimal
policy (or ordering over policies).

● Potential-based reward shaping (Ng. et al, 1999)

○ Its assumptions are often overlooked - tabular and a proper task
○ Extension to (Wiewiora et al., 2023)
○ Equivalence of potential-based shaping and Q-value initialization (Wiewiora et al.,

2023)
○ Dynamic potential-based reward shaping (Devlin and Kudenko, 2012)

● Annealing the shaped reward (Behboudian et al., 2020; Szoke et al.
2024)

Reward shaping in RL for AD papers
● 13 of 19 include reward shaping

● Some examples of behavior that shaped rewards encourage

REWARD SHAPING IN PRACTICE

• staying close to the center of the lane [Jaritz et al., 2018]

• increasing distances from other vehicles [Wang et al., 2020]

• avoiding overlap with the opposite-direction lane [Dosovitskiy et al., 2017, Liang et al.,

2018]

Reward shaping in RL for AD papers
● Of those 8 exhaustively characterized papers that include reward

shaping …
○ 0 explicitly describe the separation of their shaping rewards and their true rewards

○ 0 use a recognized method of safe reward shaping or discuss safety of reward shaping

○ 2 acknowledge usage of reward shaping

○ 1 acknowledges its potential adverse effects

REWARD SHAPING IN PRACTICE

○ 3 report performance in
terms of accumulated
reward (i.e., return)

Recommendation: Create an aligned reward function without
shaping, then optionally add a shaping reward function.

Shaped return

Return

Why?

● Clarity
○ The reward function should create an aligned problem

specification.
○ The shaping rewards give policy guidance and may

change the problem specification.

● Debugging ("overfit" plot)

Training episodes

● To avoid overloading the reward function with
two types of signals

○ Freedom to have different discount factors

Misalignment by Trial-and-Error Design

Imagine you want to design a new RL
problem.

Imagine you want to design a new RL
problem.

How might you approach this?

A trial-and-error process

Step 1: Design a candidate RL problem, including R.

A trial-and-error process

Step 1: Design a candidate RL problem, including R.

Step 2: Pick an RL algorithm for testing.

A trial-and-error process

Step 1: Design a candidate RL problem, including R.

Step 2: Pick an RL algorithm for testing.

Step 3: Learn a behavior policy.

A trial-and-error process

Step 1: Design a candidate RL problem, including R.

Step 2: Pick an RL algorithm for testing.

Step 3: Learn a behavior policy.

Step 4: If the policy isn’t right, update the RL problem
 (especially the reward function) and repeat.

RL for AD
Of 8 papers whose authors shared their reward design
process over email,
100% used trial-and-error to design their reward function.

General RL experts
We surveyed 24 expert RL practitioners.
92% used trial-and-error to design their most recent
reward function.

This trial-and-error process is the norm.

Overfitting the reward function to the
training context?

Pe
rf

o
rm

an
ce

Trial-and-error
reward design iterations

Test RL algorithm

Pe
rf

o
rm

an
ce

Trial-and-error
reward design iterations

Overfitting the reward function to the
training context?

Test RL algorithm

Other RL algorithms

Pe
rf

o
rm

an
ce

Test RL algorithm

Other RL algorithms

Trial-and-error
reward design iterations

Training context - RL algorithm, hyperparameters, and tasks

Overfitting the reward function to the
training context?

Pe
rf

o
rm

an
ce SPOILER:

Yes

Trial-and-error
reward design iterations

Overfitting the reward function to the
training context?
Training context - RL algorithm, hyperparameters, and tasks

Test RL algorithm

Other RL algorithms

Hungry Thirsty Domain

Singh et al., 2009, Where Do Rewards Come From?

Finding the potential for overfitting.
C

u
m

u
la

ti
ve

 P
er

fo
rm

an
ce

Contexts

Intersections indicate
potential for
overfitting.

Finding: Reward functions that achieve the best
performance in one learning context can be
suboptimal in another.

For all experiments, we find
the best performing reward
functions differ across
learning contexts.

This shows potential for
overfitting.

H2: The cumulative performances achieved with
different reward functions are uncorrelated across
different learning contexts.

We rank all reward functions for
each experiment setting (&).

We compare the ordering of these
rankings using Kendall’s tau.

C
u

m
u

la
ti

ve
 P

er
fo

rm
an

ce

(M
)

Distribution Sample

1

3

2

1

3

2

Finding: The cumulative performances achieved
with different reward functions are uncorrelated
across different learning contexts.

We rank all reward functions for
each experiment setting (&).

We compare the ordering of these
rankings using Kendall’s tau.

We find that these rankings are
uncorrelated (|tau| < 0.1) or
slightly correlated (|tau| < 0.2).

User Study Conducted in Jupyter Notebooks

Experts overfit reward functions too

68% of users overfit
reward functions

User P20 first tried a reward
function which achieved a mean
score of 138,092 with DDQN.

They ultimately selected a
different reward function, which
achieved a mean score of 1,031
with DDQN.

Experts' reward functions tend to not generalize.

Hard configuration

(15 steps between water & food)

Easy configuration

(5 steps between water & food)

Experts' reward functions tend to not generalize.

Hard configuration

(15 steps between water & food)

53% of RL experts submitted

reward functions that had optimal

policies which do not perform the

hard configuration well.

Experts are currently bad at writing reward functions.

Hard configuration

(15 steps between water & food)

53% of RL experts wrote reward

functions which failed to encode the

task in the hard case.

For example, P3’s reward function:

Most experts (83%) used a myopic design strategy of
using reward to order states by their desirability.

Example
“It’s best to not be hungry and thirsty, so I’ll set that to the max, 1.
Being not thirsty is better than being not hungry [so 0.3 for only
hungry /not thirsty and -0.35 for only thirsty / not hungry]. Worst is
at hungry AND thirsty; setting that to -1” – Participant 25

Is the word "reward" harming reward design?

Reasoning about reward accumulation (return) is
done poorly.

Example reused
“It’s best to not be hungry and thirsty, so I’ll set that to the max, 1.
Being not thirsty is better than being not hungry [so 0.3 for only
hungry /not thirsty and -0.35 for only thirsty / not hungry]. Worst is
at hungry AND thirsty; setting that to -1” – Participant 25

Trial-and-error reward design can overfit to the
training context (RL algorithm, hyperparameters, and
task).

And RL experts appear to do so in practice.
Impact on algorithmic comparison and ablation studies?

Takeaways

Misalignment by Discounting

REWARD AND RETURN

reinf. learning
motion planning
control theory
evolutionary algs.
utility theory
optimization
-
-

return
-1 × cost
-1 × cost
fitness
utility
objective function*
performance metric
score

reward
-1 × cost
-1 × cost
-
-
-
-
-

Field

* “objective function” more precisely refers to the expectation of G(τ)

REWARD AND RETURN

REWARD AND RETURN

discount factor

REWARD AND RETURN

discount factor

Time steps until a reward

Pr
op

or
tio

n
of

re

w
ar

d'
s

va
lu

e
re

ta
in

ed

γ = 0.99

Contemporary RL tends to have 2 discount factors:
problem-side and algorithmic

Problem-side, γMDP - part of the MDP definition

● determines how return should be calculated when evaluating a policy's
performance (e.g., for comparing algorithms or reporting results in a publication)

● with a start state distribution, determines the ranking of policies and therefore the
set of optimal policies

Algorithmic, γalg - a hyperparameter of the RL algorithm

● γalg ≤ γMDP

● γalg ≤ 0.999 in deep RL papers I have seen, usually γalg ≤ 0.99

● in practice, γalg trades stability during learning at the cost of greater distance
between the RL algorithm's loss function and the task objective

Do not confuse the two! We focus on γMDP unless otherwise stated.

Contemporary RL tends to have 2 discount factors:
problem-side and algorithmic

Problem-side, γMDP - part of the RL problem definition

● creates the true return

Algorithmic, γalg - a hyperparameter of the RL algorithm

● γalg ≤ γMDP

● γalg ≤ 0.999 in deep RL papers I have seen, usually γalg ≤ 0.99

● in practice, γalg trades stability during learning at the cost of greater distance
between the RL algorithm's loss function and the task objective

Do not confuse the two! We focus on γMDP unless otherwise stated.

If stopping at absorbing state—i.e., satisfying termination conditions—the
absorbing state value is 0 except under highly unusual circumstances.

Estimating return during RL at absorbing state vs.
when stopping an episode for other reasons

When function approximation is used, there is danger that value inference will return a
nonzero value. You can use γ=0 to get the equivalent effect as having a value of 0.

If stopping at non-absorbing state—i.e., without satisfying termination
conditions—include the value of the final state discounted by γalg (or γMDP).

The set of optimal policies can change as the discount
factor changes.

s

Separate intuitive argument: if changing γ didn't change the set of optimal policies, then
we would just set γ=0 and forget about the credit assignment problem.

+0

+0+1

+2

In this continuing domain,
● if γ < 0.5, then choosing the left loop from s is

optimal
● if γ > 0.5, then choosing the fight loop from s is

optimal

To develop intuition about your discounting, calculate
time-to-10% value (and 1% and 0.1%) via logγ

Example: Autonomous driving often has 100ms time steps.

If γ=0.9,
the rewards are discounted to X% of their full value this far in the future:

● 10% - 2.19 s = logγ0.1 * 0.1s
● 1% - 4.37 s = logγ0.01 * 0.1s
● 0.1% - 6.56 s = logγ0.001 * 0.1s

It takes a constant amount of time for each reduction by a factor 0.1.

To develop intuition about your discounting, calculate
time-to-10% value (and 1% and 0.1%) via logγ

Example: Autonomous driving often has 100ms time steps.

If γ=0.99,
the rewards are discounted to X% of their full value this far in the future:

● 10% - 22.9s = logγ0.1 * 0.1s
● 1% - 45.8s = logγ0.01 * 0.1s
● 0.1% - 68.7s = logγ0.001 * 0.1s

Even with a relatively high γ=0.99, events one minute into the future likely have
negligible effect on the value function!

To develop intuition about your discounting, calculate
time-to-10% value (and 1% and 0.1%) via logγ

Example: Autonomous driving often has 100ms time steps.

If γ=0.999,
the rewards are discounted to X% of their full value this far in the future:

● 10% - 230 s / 4 min
● 1% - 460 s / 8 min
● 0.1% - 690 s / 12 min

Each 10x decrease in (1 - γ) results in a ~10x increase in horizon.

While a precise horizon does not exist, there is an order of magnitude in which
discounting goes from being significant to being negligible.

Make all episodic tasks undiscounted.

Exponential discounting is a seemingly necessary evil in continuing tasks. It
ensures finite returns and encourages getting reward sooner.

But it has drawbacks:
 1) It appears to decrease alignment with humans, who do not evaluate
outcomes with exponential discounting.
 2) It makes return less legible / human-readable.

It's not necessary though in episodic tasks, so to avoid these drawbacks it
should not be used.

Whether you use discounting for your algorithm is a different matter.

A continuing exponentially discounted task may not
have an optimal policy under function approximation.

π*

G

G

π1

G

G π2

G

G

π in set of worst πsG

G

MDP

Reward:
-1 per time step

G

G

If the start state is
the yellow cell,

π1 has higher
expected return.

If the start state is
the aqua cell,
π2 has higher

expected return.

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).

A continuing exponentially discounted task may not
have an optimal policy under function approximation.

π*

G

G

π1

G

G π2

G

G

π in set of worst πsG

G

MDP

Reward:
-1 per time step

G

G

If the start state is
the yellow cell,

π1 has higher
expected return.

If the start state is
the aqua cell,
π2 has higher

expected return.

X
It's plausible that no
optimal policy can
be represented.

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).

A continuing exponentially discounted task may not
have an optimal policy under function approximation.

Under the optimality criterion vπ(s) ≥ vπ'(s) for all states s and all
policies π', there may be no optimal representable policy.

Can we still specify an optimal representable policy by setting the
start state distribution? I.e., set

Not if we want an aligned learning objective.
● Over the infinite time of a continuing task, the state visitation

distribution may have no support for the states that are
visited from start states within the discount factor's "horizon"
of non-negligible impact.

● Generally violates the idea that we care about performance
over an infinite task, not just at its start.

Argument comes from Discounted Reinforcement Learning Is Not an Optimization Problem by Naik et al. (2019).

Designing Aligned Reward

There are no best practices!
(Well, not yet.)

But our methods for catching misalignment might
help.

Sketch of possible best practices

1. Consider the simplest set of outcome variables that differentiate varying
levels of success vs. failure.

○ Find a per-time step version of each outcome variable that adds up to its full-trajectory
value.

○ Example: time to goal
○ Example: soccer

2. Create a parametrized reward function representation with these
variables.

○ Recommendation: try a linear representation and stubbornly try to make it work
3. Tune the parameters so that its preference ordering over outcome

distributions matches yours.
4. Evaluate.

At any point, you may learn something that causes you to return to an earlier
step.

Sketch of possible best practices

1. Consider the simplest set of outcome variables that differentiate varying
levels of success vs. failure.

○ Find a per-time step version of each outcome variable that adds up to its full-trajectory
value.

○ Example: time to goal
○ Example: soccer

2. Create a parametrized reward function representation with these variables.
○ Recommendation: try a linear representation and stubbornly try to make it work

3. Tune the parameters so that its preference ordering over outcome
distributions matches yours.

4. Evaluate.

At any point, you may learn something that causes you to return to an earlier
step.

Sketch of possible best practices

1. Consider the simplest set of outcome variables that differentiate varying
levels of success vs. failure.

○ Find a per-time step version of each outcome variable that adds up to its full-trajectory
value.

○ Example: time to goal
○ Example: soccer

2. Create a parametrized reward function representation with these variables.
○ Recommendation: try a linear representation and stubbornly try to make it work

3. Tune the parameters so that its preference ordering over outcome
distributions matches yours.

4. Evaluate.

At any point, you may learn something that causes you to return to an earlier
step.

Methods for finding misalignment become methods for optimizing
the reward function via RLHF.

Summary

Tools and insights

● Catching misalignment via preference mismatch (R vs. human)
○ Preferences over trajectorie
○ Preferences over trajectory lotteries

● Shaping
○ Keep shaping in a separate function.
○ Plot true return vs. shaped return to detect overfitting.
○ Consider a shaping method that doesn't change the preference ordering over policies /

outcome distributions.
● Discounting

○ Keep a separate problem-side γ.
○ Calculate time to 10% / 1% / 0.1% value.

● Others
○ Consider how the RL alg modifies R - e.g., clipping
○ Bias towards designing an R with legible return and expected return

What Should We Work Towards?

Promising projects

● Validated best practices for aligned reward function design
● When reward cannot be practically aligned

○ Some valued outcomes aren't measurable by the learning system
● Debug methods --> debug tools

AI safety agenda: Expose where reward design can cause
dangerous misalignment. Fix it if possible. Otherwise, identify where
it should not be used.

Reward design consultation

Free for academic or
non-profit projects

Our papers on reward design

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt,
and Peter Stone. Reward (Mis)design for Autonomous Driving.
AIJ 2023.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone,
Alessandro Allievi. The perils of trial-and-error reward design:
misdesign through overfitting and invalid task specifications.
AAAI 2023.

Brad Knox <bradknox@cs.utexas.edu>

Others
Policy invariance
Settling Reward
Hypothesis.

http://www.cs.utexas.edu/~pstone

