Robot Skill Learning: Real World to Sim and Back

- Motivation: RoboCup
- Sim2Real: Grounded Simulation Learning
- Imitation Learning from Observation:
 - Model-based approach: BCOModel-free approach: GAlfO

Faraz Torabi

Garrett Warnell

Goal:

• Learn how to make decisions by trying to imitate another agent.

Goal:

Learn how to make decisions by trying to imitate another agent.

Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

¹Niekum et al., "Learning and generalization of complex tasks from unstructured demonstrations".

Goal:

Learn how to make decisions by trying to imitate another agent.

Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

Goal:

Learn how to make decisions by trying to imitate another agent.

Conventional Imitation Learning:

 Observations of other agent (demonstrations) consist of state-action pairs.¹

Challenge:

 Precludes using a large amount of demonstration data where action sequences are not given (e.g. YouTube videos).

¹Niekum et al., "Learning and generalization of complex tasks from unstructured demonstrations".

Algorithms:

Behavioral Cloning:

- Behavioral Cloning:
 - ▶ End to End Learning for Self-Driving Cars.²

²Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

- Behavioral Cloning:
 - End to End Learning for Self-Driving Cars.²
- Inverse Reinforcement Learning:

²Zhang and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

- Behavioral Cloning:
 - End to End Learning for Self-Driving Cars.²
- Inverse Reinforcement Learning:
 - Generative Adversarial Imitation Learning.³
 - Guided Cost Learning.⁴

 $^{^2\}mbox{Zhang}$ and Cho, "Query-Efficient Imitation Learning for End-to-End Simulated Driving."

³Ho and Ermon, "Generative adversarial imitation learning".

⁴Finn, Levine, and Abbeel, "Guided cost learning: Deep inverse optimal control via policy optimization".

Goal:

• Learn how to perform a task given state-only demonstrations.

Goal:

• Learn how to perform a task given state-only demonstrations.

Goal:

• Learn how to perform a task given state-only demonstrations.

Formulation:

Given:

▶
$$D_{demo} = (s_0, s_1, ...)$$

- Learn:
 - \bullet $\pi: \mathcal{S} \to \mathcal{A}$

Previous work:

Previous work:

- Time Contrastive Networks (TCN).⁵
- Imitation from observation: Learning to imitate behaviors from raw video via context translation.⁶
- Learning invariant feature spaces to transfer skills with reinforcement learning.⁷

⁵Sermanet et al., "Time-contrastive networks: Self-supervised learning from multi-view observation".

⁶Liu et al., "Imitation from observation: Learning to imitate behaviors from raw video via context translation".

⁷Gupta et al., "Learning invariant feature spaces to transfer skills with reinforcement learning".

Previous work:

- Time Contrastive Networks (TCN).⁵
- Imitation from observation: Learning to imitate behaviors from raw video via context translation.⁶
- Learning invariant feature spaces to transfer skills with reinforcement learning.⁷

Concentrate on perception; require time-aligned demonstrations.

⁵Sermanet et al., "Time-contrastive networks: Self-supervised learning from multi-view observation".

⁶Liu et al., "Imitation from observation: Learning to imitate behaviors from raw video via context translation".

⁷Gupta et al., "Learning invariant feature spaces to transfer skills with reinforcement learning".

Efficient Robot Skill Learning

- Motivation: RoboCup
- Sim2Real: Grounded Simulation Learning
- Imitation Learning from Observation:
 - Model-based approach: BCO
 - Model-free approach: GAlfO

Model-based Approach

Imitation Learning:

$$D_{demo} = \{(s_0, a_0), (s_1, a_1), ...\}$$

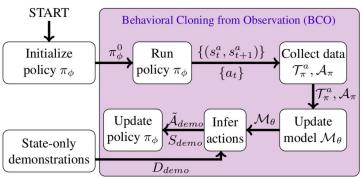
Model-based Approach

- Imitation Learning: $D_{demo} = \{(s_0, a_0), (s_1, a_1), ...\}$
- Imitation from Observation: $D_{demo} = \{(s_0,?),(s_1,?),...\}$

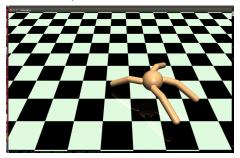
Model-based Approach

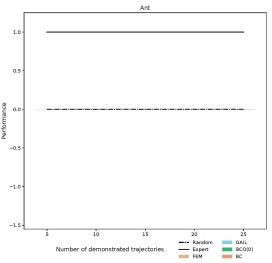
- Imitation Learning: $D_{demo} = \{(s_0, a_0), (s_1, a_1), ...\}$
- Imitation from Observation: $D_{demo} = \{(s_0,?),(s_1,?),...\}$

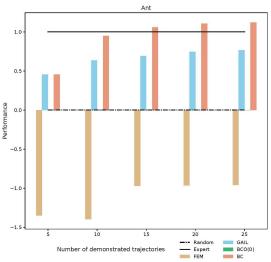
Model-based Approach:

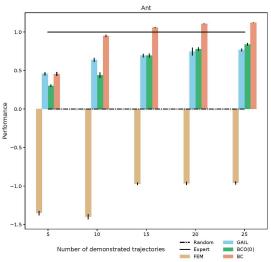


- Domain:
 - Mujoco domain "Ant" with 111 dimensional state space and 8 dimensional action space.









Issue:

Inverse dynamics model is learned using a random policy.

Issue:

• Inverse dynamics model is learned using a random policy.

Issue:

Inverse dynamics model is learned using a random policy.

Solution: BCO(α)

Update the model with the learned policy.

Issue:

Inverse dynamics model is learned using a random policy.

- Update the model with the learned policy.
- Parameter α controls tradeoff between performance and environment interactions

Issue:

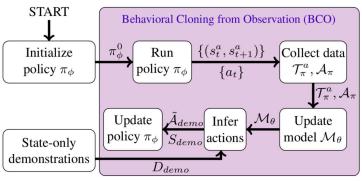
Inverse dynamics model is learned using a random policy.

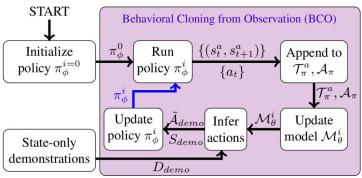
- Update the model with the learned policy.
- Parameter α controls tradeoff between performance and environment interactions
 - $\alpha = 0$: no post-demonstration interaction.

Issue:

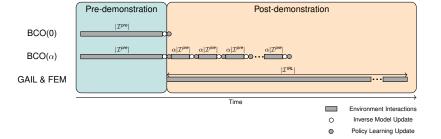
Inverse dynamics model is learned using a random policy.

- Update the model with the learned policy.
- ullet Parameter lpha controls tradeoff between performance and environment interactions
 - $\alpha = 0$: no post-demonstration interaction.
 - Increasing α : increasing the number of interactions allowed at each iteration.

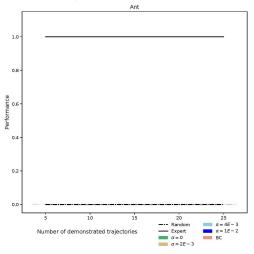




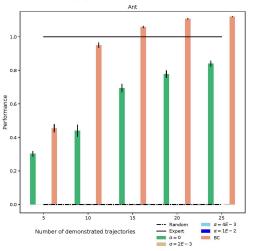
Interaction time:



Effect of varying α on BCO(α):

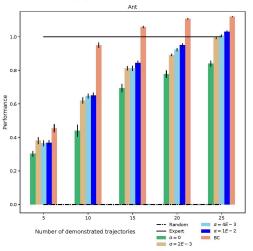


Effect of varying α on BCO(α):



Behavioral Cloning from Observation (BCO(α))

Effect of varying α on BCO(α):



Efficient Robot Skill Learning

- Motivation: RoboCup
- Sim2Real: Grounded Simulation Learning
- Imitation Learning from Observation:
 - Model-based approach: BCO
 - ▶ Model-free approach: GAlfO

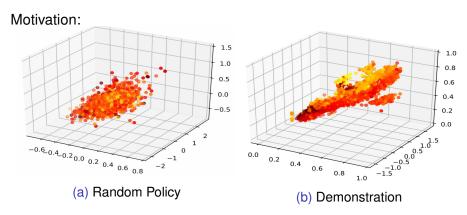
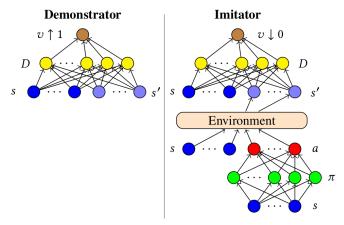
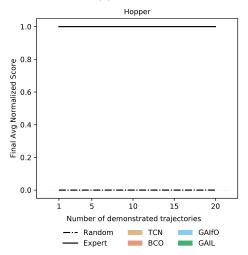


Figure: State transition distribution in Hopper domain.

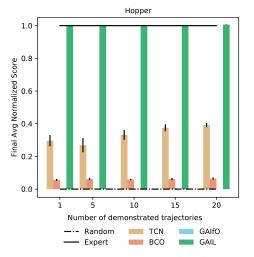
Algorithm:



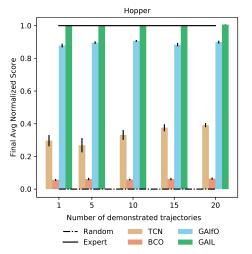
Comparison against other IfO approaches and GAIL:



Comparison against other IfO approaches and GAIL:



Comparison against other IfO approaches and GAIL:



Challenges:

Challenges:

States are not fully-observable.

Challenges:

- States are not fully-observable.
- States are not Markovian.

Challenges:

- States are not fully-observable.
- States are not Markovian.

Solution:

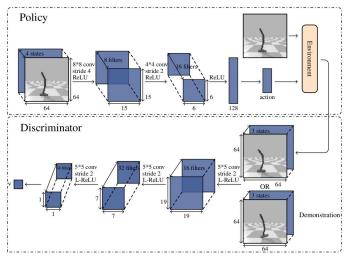
Challenges:

- States are not fully-observable.
- States are not Markovian.

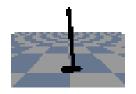
Solution:

Stack four frames.

Algorithm:

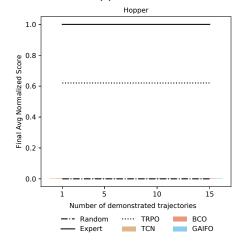


Demonstration:

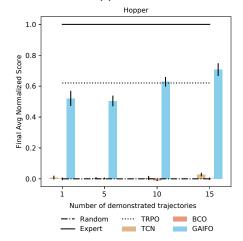


Learned Policy:

Comparison against other IfO approaches:



Comparison against other IfO approaches:

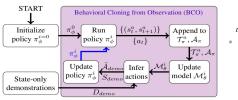


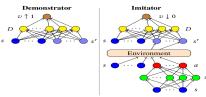
Testing algorithms on more domains.

- Testing algorithms on more domains.
- Adapt algorithms for physical robots.

- Testing algorithms on more domains.
- Adapt algorithms for physical robots.
- Sim-to-real transfer using the algorithms.

Imitation Learning Summary





(a) BCO

(b) GAIfO

Faraz Torabi

Garrett Warnell