
Robot Skill Learning: Real World to Sim and Back

Motivation: RoboCup

Sim2Real: Grounded Simulation Learning

Imitation Learning from Observation:
◮ Model-based approach: BCO
◮ Model-free approach: GAIfO
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Imitation Learning

Goal:

Learn how to make decisions by trying to imitate another agent.
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Imitation Learning

Goal:

Learn how to make decisions by trying to imitate another agent.

Conventional Imitation Learning:

Observations of other agent (demonstrations) consist of

state-action pairs.1

Challenge:

Precludes using a large amount of demonstration data where

action sequences are not given (e.g. YouTube videos).

1Niekum et al., “Learning and generalization of complex tasks from unstructured demonstrations”.
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Algorithms:

Peter Stone Imitation Learning from Observation UT Austin 9



Imitation Learning

Algorithms:

Behavioral Cloning:

Peter Stone Imitation Learning from Observation UT Austin 9



Imitation Learning

Algorithms:

Behavioral Cloning:
◮ End to End Learning for Self-Driving Cars.2

2Zhang and Cho, “Query-Efficient Imitation Learning for End-to-End Simulated Driving.”

Peter Stone Imitation Learning from Observation UT Austin 9



Imitation Learning

Algorithms:

Behavioral Cloning:
◮ End to End Learning for Self-Driving Cars.2

Inverse Reinforcement Learning:

2Zhang and Cho, “Query-Efficient Imitation Learning for End-to-End Simulated Driving.”

Peter Stone Imitation Learning from Observation UT Austin 9



Imitation Learning

Algorithms:

Behavioral Cloning:
◮ End to End Learning for Self-Driving Cars.2

Inverse Reinforcement Learning:
◮ Generative Adversarial Imitation Learning.3

◮ Guided Cost Learning.4

2Zhang and Cho, “Query-Efficient Imitation Learning for End-to-End Simulated Driving.”

3Ho and Ermon, “Generative adversarial imitation learning”.

4Finn, Levine, and Abbeel, “Guided cost learning: Deep inverse optimal control via policy optimization”.
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Imitation from Observation
Goal:

Learn how to perform a task given state-only demonstrations.
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Imitation from Observation

Goal:

Learn how to perform a task given state-only demonstrations.

Formulation:

Given:
◮ Ddemo = (s0, s1, ...)

Learn:
◮ π : S → A
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Imitation from Observation

Previous work:
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Imitation from Observation

Previous work:

Time Contrastive Networks (TCN).5

Imitation from observation: Learning to imitate behaviors from raw

video via context translation.6

Learning invariant feature spaces to transfer skills with

reinforcement learning.7

5Sermanet et al., “Time-contrastive networks: Self-supervised learning from multi-view observation”.

6Liu et al., “Imitation from observation: Learning to imitate behaviors from raw video via context translation”.

7Gupta et al., “Learning invariant feature spaces to transfer skills with reinforcement learning”.
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Imitation from Observation

Previous work:

Time Contrastive Networks (TCN).5

Imitation from observation: Learning to imitate behaviors from raw

video via context translation.6

Learning invariant feature spaces to transfer skills with

reinforcement learning.7

Concentrate on perception; require time-aligned demonstrations.

5Sermanet et al., “Time-contrastive networks: Self-supervised learning from multi-view observation”.

6Liu et al., “Imitation from observation: Learning to imitate behaviors from raw video via context translation”.

7Gupta et al., “Learning invariant feature spaces to transfer skills with reinforcement learning”.
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Efficient Robot Skill Learning

Motivation: RoboCup

Sim2Real: Grounded Simulation Learning

Imitation Learning from Observation:
◮ Model-based approach: BCO
◮ Model-free approach: GAIfO
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Model-based Approach

Imitation Learning: Ddemo = {(s0,a0), (s1,a1), ...}
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Model-based Approach

Imitation Learning: Ddemo = {(s0,a0), (s1,a1), ...}

Imitation from Observation: Ddemo = {(s0, ?), (s1, ?), ...}

Model-based Approach:

Learn an inverse

dynamics model
Infer actions

Perform a conventional

IL method

Peter Stone Imitation Learning from Observation UT Austin 13



Behavioral Cloning from Observation (BCO)

Algorithm:

Torabi, Warnell, and Stone, IJCAI 2018
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Behavioral Cloning from Observation (BCO)

Experimental Results:

Domain:
◮ Mujoco domain "Ant" with 111 dimensional state space and 8

dimensional action space.
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Behavioral Cloning from Observation (BCO(α))

Issue:

Inverse dynamics model is learned using a random policy.
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Update the model with the learned policy.

Parameter α controls tradeoff between performance and
environment interactions
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Behavioral Cloning from Observation (BCO(α))

Issue:

Inverse dynamics model is learned using a random policy.

Solution: BCO(α)

Update the model with the learned policy.

Parameter α controls tradeoff between performance and
environment interactions

◮ α = 0: no post-demonstration interaction.
◮ Increasing α: increasing the number of interactions allowed at each

iteration.

Peter Stone Imitation Learning from Observation UT Austin 17



Behavioral Cloning from Observation (BCO(α))

Algorithm:
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Behavioral Cloning from Observation (BCO(α))

Algorithm:
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Behavioral Cloning from Observation (BCO(α))

Interaction time:

BCO(0)

BCO(α)

GAIL & FEM

Pre-demonstration Post-demonstration

|Ipre|

|Ipre| α|Ipre| α|Ipre| α|Ipre| ...α|I
pre|

...
|I IRL|

Time
Environment Interactions

Inverse Model Update

Policy Learning Update
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Behavioral Cloning from Observation (BCO(α))

Effect of varying α on BCO(α):
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Efficient Robot Skill Learning

Motivation: RoboCup

Sim2Real: Grounded Simulation Learning

Imitation Learning from Observation:
◮ Model-based approach: BCO
◮ Model-free approach: GAIfO
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Gen. Adversarial Imitation from Observation (GAIfO)

Motivation:

(a) Random Policy (b) Demonstration

Figure: State transition distribution in Hopper domain.
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Gen. Adversarial Imitation from Observation (GAIfO)

Algorithm:
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Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches and GAIL:
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Gen. Adversarial Imitation from Observation (GAIfO)
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Gen. Adversarial Imitation from Observation (GAIfO)

Challenges:

States are not fully-observable.

States are not Markovian.

Solution:

Stack four frames.

Peter Stone Imitation Learning from Observation UT Austin 25



Gen. Adversarial Imitation from Observation (GAIfO)

Algorithm:
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Gen. Adversarial Imitation from Observation (GAIfO)

Demonstration:
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Gen. Adversarial Imitation from Observation (GAIfO)

Learned Policy:
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Gen. Adversarial Imitation from Observation (GAIfO)

Comparison against other IfO approaches:
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Ongoing Work
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Ongoing Work

Testing algorithms on more domains.
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Ongoing Work

Testing algorithms on more domains.

Adapt algorithms for physical robots.
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Ongoing Work

Testing algorithms on more domains.

Adapt algorithms for physical robots.

Sim-to-real transfer using the algorithms.
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Imitation Learning Summary

(a) BCO (b) GAIfO

Faraz Torabi Garrett Warnell
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