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• Actions: Wave, Stand, Clap

• Observations: colors, reward

• Goal: Find an optimal policy

− Way of selecting actions that gets you the most reward
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oi = T (si) ri = R(si, ai) si+1 = P(si, ai)
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• Reinforcement Learning in practice (end)
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The Big Picture

• AI −→ ML −→ RL

• Types of Machine Learning

Supervised learning: learn from labeled examples
Unsupervised learning: cluster unlabeled examples
Reinforcement learning: learn from interaction
− Defined by the problem:
• closed-loop
• select own actions
• sequential (time-delayed)

− Many approaches possible (including evolutionary)
− Book focusses on a particular class of approaches
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• Agent’s perspective: only policy under control

− State representation, reward function pre-exist
− value function: how good a state is in the long run
− model: reward function + state transition function
− Focus on policy-learning algorithms, theoretical analyses
− Appeal: program by just specifying goals
− Practice: need to pick the representation, reward
− videos

• Methodical approach

− Solid foundation rather than comprehensive coverage
− RL reading group



Syllabus

• Available on-line
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