CS395T Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 3a, 9/9/03

- Submitting responses to readings
 - Prefer non-summary ones
 - Show me you've **thought** about the readings

- Submitting responses to readings
 - Prefer non-summary ones
 - Show me you've **thought** about the readings
- Changed readings

- Submitting responses to readings
 - Prefer non-summary ones
 - Show me you've **thought** about the readings
- Changed readings
- Presentation dates: pick a topic and a date

- Submitting responses to readings
 - Prefer non-summary ones
 - Show me you've **thought** about the readings
- Changed readings
- Presentation dates: pick a topic and a date
- Any questions?

Rational choice theory

• Section 1.2.4: people are not always rational.

Rational choice theory

- Section 1.2.4: people are not always rational.
- Can this be explained away by arguing that with humans, the payoff function is not fixed once and for all?

Rational choice theory

- Section 1.2.4: people are not always rational.
- Can this be explained away by arguing that with humans, the payoff function is not fixed once and for all?
- No! (Kahneman and Tversky)

Mixed strategy equilibrium

			Player	2	
		Action	1	Action	2
Plaver 1	Action 1	4,8		2,0	
1 + 00 y 0 + 1	Action 2	6,2		0,8	

Bayes Nash Equilibrium

• Allows for uncertainty about opponent strategy

Bayes Nash Equilibrium

- Allows for uncertainty about opponent strategy
- Is it ever helpful for a player to know how certain he is about an opponent's expected actions?

Bayes Nash Equilibrium

- Allows for uncertainty about opponent strategy
- Is it ever helpful for a player to know how certain he is about an opponent's expected actions?
- How is this expectation of opponents actions different when the player is allowed repeated game sessions with the same opponent versus anonymous matchups?

• Iterated prisoner's dilemma with identity

- Iterated prisoner's dilemma with identity
- What if you play infinitely?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?
- Some strategies:
 - hawk (always Fink)
 - Grim trigger (cooperate until the other defects)
 - tit-for-tat
 - Joss (tit-for-tat with periodic defection)

Focal points

• We need to meet in Paris on a particular day.

Focal points

- We need to meet in Paris on a particular day.
- When and where?

Focal points

- We need to meet in Paris on a particular day.
- When and where?
- What are the Nash Equilibria?

