CS395T Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 3b, 9/11/03

Logistics

- Submitting responses to readings
 - Prefer non-**just**-summary ones
 - Show me you've thought about the readings
 - If it helps to summarize in addition, that's fine

Logistics

- Submitting responses to readings
 - Prefer non-just-summary ones
 - Show me you've thought about the readings
 - If it helps to summarize in addition, that's fine
- Presentation dates: announced soon

Logistics

- Submitting responses to readings
 - Prefer non-just-summary ones
 - Show me you've thought about the readings
 - If it helps to summarize in addition, that's fine
- Presentation dates: announced soon
- Any questions?

Mechanism Design

• The rules of the game (what strategies are possible)

Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome

Mechanism Design

- The rules of the game (what strategies are possible)
- Defines a mapping from strategy to outcome
- Terms:
 - Efficient
 - (Weak) Budget balanced
 - Individual rationality
- "An ideal mechanism provides agents with a dominant strategy and also implements a solution to the multiagent distributed optimization problem" (p. 29, last paragraph of the section)

Relation to game theory

• What's the mechanism in this game?

Relation to game theory

- What's the mechanism in this game?
- What's an alternative mechanism?

• Allows for uncertainty about opponent **type**

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?
 - What if I tell you, I'll take what you tell me as your value and compute for you the correct thing to do given what other people bid?

Ex ante vs. ex post

• Mechanism: each of you give me \$1, one gets \$100 back

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?
- Ex ante, yes
- Ex post, no

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	value
camera alone	\$50
flash alone	10
both	100
tripod	20

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	value
camera alone	\$50
flash alone	10
both	100
tripod	20

	value
camera	\$60
flash	20
tripod	30

- Assume quasi-linear values, etc.
- What is the allocation?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?
- What are choice set monotonic, negative externality, single-agent effects?

Computational considerations

• Why is this mechanism a burden on the bidders?

Impossibility/possibility results

• e.g. strategy-proof, efficient, inifividually rational, and (strong) budget-balanced impossible

