CS395T Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 4a, 9/16/03

- Thursday's readings:
 - Weber mainly for the idea

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I'm an author on the next two readings

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
 - Look for your name
 - Contact me with problems

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
 - Look for your name
 - Contact me with problems
 - Still tentative, but I'll ask your permission to switch

- Thursday's readings:
 - Weber mainly for the idea
 - PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
 - Look for your name
 - Contact me with problems
 - Still tentative, but I'll ask your permission to switch
- Any questions?

• Exposure

- Exposure
- Free rider

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations
- Demand reduction

- Exposure
- Free rider
- Threshold problem
 - Favors bidders wanting aggregations
- Demand reduction
- Threats

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

• Assume no combinatorial bids: illustrate exposure

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?
- What are B and C's rational bids?

	# F	Parki	ng Spots won
	0	1	2
Α	0	0	100
В	0	75	75
С	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?
- What are B and C's rational bids?
- Illustrate mutually exclusive bids from different rounds

	# Parking Spots won		
	0	1	2
Α	0	25	100
В	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged

	# Parking Spots won		
	0	1	2
Α	0	25	100
В	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?

	# Parking Spots won		
	0	1	2
Α	0	25	100
В	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?
- Now let's try again.

	# Parking Spots won		
	0	1	2
Α	0	25	100
В	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
- What are our utilities?
- Now let's try again.
- Demand reduction can be taken to an extreme.

Threats

- Bidder A winning license 37 for \$1M.
- Bidders A and B competing for license 63.
- Simultaneously, bidder B bids:
 - licence 37: \$1.1M.
 - licence 63: \$13,000,037

Threats

- Bidder A winning license 37 for \$1M.
- Bidders A and B competing for license 63.
- Simultaneously, bidder B bids:
 - licence 37: \$1.1M.
 - licence 63: \$13,000,037

What's the threat?

Goal: Fast auction; simultaneous closings; simple

• Close licenses separately, but slow down bidding on each one as final prices are approached.

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.
 - efficiency on big licenses, speed after that.

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.
 - efficiency on big licenses, speed after that.
- Simultaneous close, but require activity
 - Activity on a license: bid placed or previous high bid
 - Low activity lowers *eligibility*
 - Eligibility bounds what you can bid on
 - Activity requirements increase as time goes on

• NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA \Rightarrow elibibiligy = 50

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA \Rightarrow elibibiligy = 50
 - Activity only on SF \Rightarrow can no longer bid on NY

- NY = 50 BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
 - So can bid on any 2
 - Can switch around
- If you need to maintain activity of 80% of eligibility:
 - Activity only on LA \Rightarrow elibibiligy = 50
 - Activity only on SF \Rightarrow can no longer bid on NY
- Prevents *wait and see* strategy

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

Bidders can be counted on to seek ways to outfox the mechanism — Milgrom p. 150 (top)

Used laboratory experiments too

Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

• Designated entities also didn't work

• High complexity estimates

- High complexity estimates
- What's so hard?

- High complexity estimates
- What's so hard?
 - 492 licenses $\Rightarrow > 10^{148}$ combinations.

- High complexity estimates
- What's so hard?
 - 492 licenses $\Rightarrow > 10^{148}$ combinations.
- 700 MHz never happened

Human factors

• CEO allows fears to control strategy

Human factors

- CEO allows fears to control strategy
- Throwing good money after bad
 - German auction
 - Auction 35 (p.27,28)

