CS395T

Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences
The University of Texas at Austin
Week 4a, 9/16/03

Logistics

- Thursday's readings:
- Weber mainly for the idea

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain
- I'm an author on the next two readings

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
- Look for your name
- Contact me with problems

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
- Look for your name
- Contact me with problems
- Still tentative, but l'll ask your permission to switch

Logistics

- Thursday's readings:
- Weber mainly for the idea
- PRSDR for the possible domain
- I'm an author on the next two readings
- TAC readings
- Some more of the schedule, including presentation
- Look for your name
- Contact me with problems
- Still tentative, but l'll ask your permission to switch
- Any questions?

Some terms

- Exposure

UTES omememe cempus same

Some terms

- Exposure
- Free rider

Some terms

- Exposure
- Free rider
- Threshold problem
- Favors bidders wanting aggregations

Some terms

- Exposure
- Free rider
- Threshold problem
- Favors bidders wanting aggregations
- Demand reduction

Some terms

- Exposure
- Free rider
- Threshold problem
- Favors bidders wanting aggregations
- Demand reduction
- Threats

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?
- What are B and C's rational bids?

Example

	\# Parking Spots won		
	0	1	2
A	0	0	100
B	0	75	75
C	0	40	40

- Assume no combinatorial bids: illustrate exposure
- I'm A and have bid 80 for 2 spots
- B has bid 55 for spot 1
- C has bid 15 for spot 2
- Who's winning?
- If auction ends, what is everyone's utility?
- What are B and C's rational bids?
- Illustrate mutually exclusive bids from different rounds

Demand Reduction

	\# Parking Spots won		
	0	1	2
A	0	25	100
B	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged

Demand Reduction

	\# Parking Spots won		
	0	1	2
A	0	25	100
B	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
-What are our utilities?

Demand Reduction

	\# Parking Spots won		
	0	1	2
A	0	25	100
B	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
-What are our utilities?
- Now let's try again.

Demand Reduction

	\# Parking Spots won		
	0	1	2
A	0	25	100
B	0	30	90

- Simultaneous ascending auctions, \$5 increments for bids
- I'll be A, you be B
- Always place the best bids, given that my bids are unchanged
-What are our utilities?
- Now let's try again.
- Demand reduction can be taken to an extreme.

Threats

- Bidder A winning license 37 for $\$ 1 \mathrm{M}$.
- Bidders A and B competing for license 63.
- Simultaneously, bidder B bids:
- licence 37: \$1.1M.
- licence 63: \$13,000,037

Threats

- Bidder A winning license 37 for $\$ 1 \mathrm{M}$.
- Bidders A and B competing for license 63.
- Simultaneously, bidder B bids:
- licence 37: \$1.1M.
- licence 63: \$13,000,037

What's the threat?

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.
- efficiency on big licenses, speed after that.

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.
- efficiency on big licenses, speed after that.
- Simultaneous close, but require activity
- Activity on a license: bid placed or previous high bid
- Low activity lowers eligibility
- Eligibility bounds what you can bid on
- Activity requirements increase as time goes on

Example

- $N Y=50$ BUs; LA $=40$ BUs; $\mathrm{SF}=30 \mathrm{BUs} ;$ etc.

Example

- $N Y=50$ BUs; LA $=40$ BUs; $\mathrm{SF}=30 \mathrm{BUs} ;$ etc.
- Deposit enough to get eligibility to bid on 100 BUs

Example

- $N Y=50$ BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
- So can bid on any 2
- Can switch around

Example

- $N Y=50$ BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
- So can bid on any 2
- Can switch around
- If you need to maintain activity of 80% of eligibility:
- Activity only on $L A \Rightarrow$ elibibiligy $=50$

Example

- $N Y=50$ BUs; LA = 40 BUs; SF = 30 BUs; etc.
- Deposit enough to get eligibility to bid on 100 BUs
- So can bid on any 2
- Can switch around
- If you need to maintain activity of 80% of eligibility:
- Activity only on $L A \Rightarrow$ elibibiligy $=50$
- Activity only on SF \Rightarrow can no longer bid on NY

Example

- $N Y=50$ BUs; LA $=40$ BUs; $\mathrm{SF}=30 \mathrm{BUs} ;$ etc.
- Deposit enough to get eligibility to bid on 100 BUs
- So can bid on any 2
- Can switch around
- If you need to maintain activity of 80% of eligibility:
- Activity only on $L A \Rightarrow$ elibibiligy $=50$
- Activity only on SF \Rightarrow can no longer bid on NY
- Prevents wait and see strategy

Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
- Conflicting effects \Rightarrow can'† tell which will dominate

Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
- Conflicting effects \Rightarrow can'† tell which will dominate
- Ignores transaction costs of implementing policies

Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
- Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations

Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
- Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations
- Doesn'† scale to complexity of spectrum auctions

Limits of theory (Milgrom, p.151)

- Identify variables, but not relative magnitudes
- Conflicting effects \Rightarrow can’† tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
- e.g. bidder valuations
- Doesn'† scale to complexity of spectrum auctions

Bidders can be counted on to seek ways to outfox the mechanism - Milgrom p. 150 (top)

Used laboratory experiments too

Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

Failure modes

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?
- Designated entities also didn’† work

Combinatorial bidding

- High complexity estimates

Combinatorial bidding

- High complexity estimates
- What's so hard?

Combinatorial bidding

- High complexity estimates
- What's so hard?
- 492 licenses $\Rightarrow>10^{148}$ combinations.

Combinatorial bidding

- High complexity estimates
- What's so hard?
- 492 licenses $\Rightarrow>10^{148}$ combinations.
- 700 MHz never happened

Human factors

- CEO allows fears to control strategy

Human factors

- CEO allows fears to control strategy
- Throwing good money after bad
- German auction
- Auction 35 (p.27,28)

