CS395T Reinforcement Learning: Theory and Practice Fall 2004

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week4b: Thursday, September 23rd

Good Afternoon Colleagues

• Are there any questions?

- Are there any questions?
- Pending questions:
 - Policy iteration vs. explore/exploit?

- Are there any questions?
- Pending questions:
 - Policy iteration vs. explore/exploit?
 - Jack's Car rental pictures

- Are there any questions?
- Pending questions:
 - Policy iteration vs. explore/exploit?
 - Jack's Car rental pictures
 - Convergence guarantees (polynomial)

Policy Evaluation

• V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)
- Policy evaluation on the week 0 problem
 - Are the conditions met?

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)
- Policy evaluation on the week 0 problem
 - Are the conditions met?
 - (book slides)

- V^{π} exists and is unique if $\gamma < 1$ or termination guaranteed for all states under policy π . (p. 90)
- Policy evaluation converges under the same conditions (p. 91)
- Policy evaluation on the week 0 problem
 - Are the conditions met?
 - (book slides)
- Exercises 4.1, 4.2

Policy Improvement

• Policy improvement theorem: $\forall s, Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) \Rightarrow \forall s, V^{\pi'}(s) \geq V^{\pi}(s)$

Policy Improvement

- Policy improvement theorem: $\forall s, Q^{\pi}(s, \pi'(s)) \geq V^{\pi}(s) \Rightarrow \forall s, V^{\pi'}(s) \geq V^{\pi}(s)$
- (book slides)

- Policy improvement theorem: $\forall s, Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \Rightarrow \forall s, V^{\pi'}(s) \ge V^{\pi}(s)$
- (book slides)
- Polinomial time convergence (in number of states and actions) even though m^n policies.
 - Ignoring effect of γ and bits to represent rewards/transitions

- Policy improvement theorem: $\forall s, Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s) \Rightarrow \forall s, V^{\pi'}(s) \ge V^{\pi}(s)$
- (book slides)
- Polinomial time convergence (in number of states and actions) even though m^n policies.
 - Ignoring effect of γ and bits to represent rewards/transitions
 - p. 107: Is LP still inefficient?

- Show the new policy at each step
 - Not actually to compute policy

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions
- What happens if we output deterministic policy (as in book)?

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions
- What happens if we output deterministic policy (as in book)?
- How would policy iteration proceed in comparison?
 - More or fewer policy updates?

- Show the new policy at each step
 - Not actually to compute policy
 - Break policy ties with equiprobable actions
 - No stochastic transitions
- What happens if we output deterministic policy (as in book)?
- How would policy iteration proceed in comparison?
 - More or fewer policy updates?
 - True in general?

• p. 109: This chapter treats **bootstrapping** with a model

p. 109: This chapter treats **bootstrapping** with a model
Next: no model and no bootstrapping

- p. 109: This chapter treats **bootstrapping** with a model
 - Next: no model and no bootstrapping
 - Then: no model, but bootstrapping

