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Sony AIBO Robot
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Robot Motion

 Forward and Inverse Kinematics
 PID Control
 Frame-Based Motions on the AIBO
 Modeling Effects of Motions



Forward Kinematics, Inverse 
Kinematics, & PID Control in a Nutshell
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Robotic Arms

Revolute Joint

Prismatic Joint
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Forward Kinematics

 The problem: determine 
the position of the end of 
the robotic arm given θ1 
and θ2 

 Geometric Approach
 Algebraic Approach
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A simple example
 Two links connected 

by rotational joints to 
a stable platform

 Given θ1 and θ2, 
solve for a, b and θ 
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Solution
 Can be solved 

trigonometrically:

a = l1 cos (θ1 ) + l2 cos(θ1 + θ2)

b = l1 sin (θ1 ) + l2 sin (θ1 + θ2)

Θ = θ1 + θ2
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Denavit-Hartenberg Notation
 Assign each joint its own coordinate frame according to 

some rules.  
 Describe the motion of each frame relative to the 

previous frame in terms of four parameters ,  a , d, 
 Plug these values into the DH matrix to get 

transformations from one coordinate frame to the next
 Get the final transformation matrix from the final frame 

to the initial frame through a series of DH matrix 
multiplications

[ cosθi −sinθ i 0 a i−1 

sinθ i cosα i−1  cosθi cosα i−1  −sinα i−1  −sinα i−1 d i
sinθ i sinα i−1  cosθi sinα i−1  cosα i−1  cosα i−1 d i

0 0 0 1
]
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Inverse Kinematics

 Going backwards
 Find joint configuration given position & 

orientation of tool (end effector)
 More complex (path planning & 

dynamics)
 Usually solved either algebraically or 

geometrically
 Possibility of no solution, one solution, 

or multiple solutions
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Another example

Lets assume l1 = l2

What is the configuration of 
each joint if the end effector 
is located at (l1, l2,-)? 

(ie. Find θ1 and θ2)



15-491 CMRoboBits

Solution

θ1=0, θ2 = 90

Or

θ1=90, θ2 = 0

(Two Solutions)
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The Math

 That was an 
easy one… what 
does the math 
look like?

θ 1=arcsin  l 2sin θ 2 

 x2 y 2 arctan2  yx 

c2=a 2b2−2ab cosC
 x2 y 2 =l

12l 22−2 l 1 l 2 cos 180−θ 2 

cos 180−θ 2 =−cos θ 2 

cos θ 2 =
x2 y 2−l

12−l 22

2 l 1 l 2

θ 2=arccos  x2 y 2−l
12−l 22

2 l 1 l 2
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Reachable Workspace

l1

l2

Joint Limits:

-180 ° ≤ θ1 ≤ 180° 

-180 ° ≤ θ2 ≤ 180° 

Reachable 
Workspace
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PID Control

 Proportional Integral Derivative Control
 The Basic Problem:

 We have n joints, each with a desired position which 
we have specified

 Each joint has an actuator which is given a command 
in units of torque

 Most common method for determining required 
torques is by feedback from joint sensors
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The Control Loop

e u
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What is PID Control?

 Proportional, Integral, & Derivative Control
 Proportional: Multiply current error by constant to try to 

resolve error 

 Integral: Multiply sum of previous errors by constant to 
resolve steady state error (error after system has 
come to rest)

 Derivative: Multiply time derivative of error change by 
constant to resolve error as quickly as possible
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Summary

 These concepts make up the low level 
functionality of the AIBO

 Implemented once and used repeatedly
 For more information about PID Control 

and Forward & Inverse Kinematics take 
Matt Mason’s Robotic Manipulation 
course
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The Motion Interface
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AIBO Actuators
 18 degrees of freedom with a continuously 

controllable range of motion
 3 DOF in each leg (12 total)
 3 DOF in the head
 2 DOF in the tail
 1 DOF in the jaw

 Each joint is controlled by specifying to a 
desired joint angle to OVirtualRobotComm.

 2 binary motors for the ears
 A speaker for general sound production
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Motor Control

 Each message to OVirtualRobotComm 
contains a set of target angles for the joints
 Each target is used for a PID controller (part of 

the OS) that controls each motor
 Each target angle is used for one 8ms motor 

frame

 Each message contains at least 4 motor 
frames (32ms)
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The Motion Interface

Walk Engine

Walk Parameters

Frame Interpolator

Motion Frames

Dynamic Walking Motion Static Frame-Based Motion
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Frame-Based Motion

 Each motion is described by a series of 
“frames” which specify the position of the 
robot, and a time to interpolate between 
frames

 Movement between frames is calculated 
through linear interpolation of each joint
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Kicking

 A series of set positions for the robot
 Linear interpolation between the frames

 Kinematics and interpolation provided by 
CMWalkEngine

 Set robot in desired positions and query 
the values of the joints
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Very Effective Kicks
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Another Kick
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High Sensitivity to Parameters
Good Settings for Effective Kick
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High Sensitivity to Parameters
Exact Same Settings - Lab
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High Sensitivity to Parameters
Good Settings for the Lab
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Use of Kicks in Behaviors

 Modeling effects of kicking motions
 Ball vision analysis
 Ball trajectory angle analysis
 Kick strength analysis

 Kick selection for behaviors
 Selection algorithm
 Performance comparison
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Accuracy of Object Detection Varies 
-- Robot Standing --
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Distance (mm)

Accuracy of Object Detection Varies 
-- Robot Pacing --
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Ball Trajectory Angle

 Estimate the angle of the ball’s 
trajectory relative to the robot

Track ball’s trajectory after the kick
Retain information about ball position in 
each vision frame
Calculate angle of trajectory using linear 
regression
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Angle Analysis
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Kick Strength

 Estimate the distance the ball will travel 
after a kick.

Impossible to track entire path of the 
ball
Calculate only the final location of the 
ball relative to the kick position
Estimate failure rate of the kick using 
distance threshold
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Forward Kick Distance Analysis
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Head Kick Distance Analysis
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Kick Selection
  Incorporate the kick models into the selection 

algorithm
 The robot knows its position on the field relative to 

the goal and the desired ball trajectory
 The robot selects appropriate kick by referencing 

the kick model
 If no kick fits desired criteria, robot selects closest 

matching kick and turns/dribbles ball to 
appropriate position 
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Kick Selection Performance
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Kick Selection in Action
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Summary

 Effectively moving a four-legged robot is 
challenging

 Effectiveness of motion is highly 
sensitive to motion parameters

 Ideally, we would like to set parameters 
automatically.
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Frame-Based Motion
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Coordinate Frames
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Frame-Based Motion

 Each motion is described by a series of 
“frames” which specify the position of the 
robot, and a time to interpolate between 
frames

 Movement between frames is calculated 
through linear interpolation of each joint
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Examples: Valid Motion Frames

  LegAng(b,0, 0.0, 1.5, 0.0);
  LegAng(b,1, 0.0, 1.5, 0.0);
  LegAng(b,2, 0.1, 0.0, 0.2);
  LegAng(b,3, 0.1, 0.0, 0.2);
  m[n].body = b;
  m[n].time = 100;
  n++;

  BodyPos(b,98,RAD(16));
  HeadAng(b, 0.5, 1.5, 0.0);
  MouthAng(b,-.7);
  LegPos(b,0, 123, 85,0);
  LegPos(b,1, 123,-85,0);
  LegPos(b,2, -80  , 75,0);
  LegPos(b,3, -80  ,-75,0);
  m[n].body = b;
  m[n].time = 100;
  n++;

  BodyPos(b,98,RAD(16));
  HeadAng(b, 0.5, 1.5, 0.0);
  LegPos(b,0, 123,  85, 0);
  LegPos(b,1, 123,-85, 0);
  LegAng(b,2, 0.1, 0.0, 0.2);
  LegAng(b,3, 0.1, 0.0, 0.2);
  m[n].body = b;
  m[n].time = 100;
  n++;

  m[n].body = b;
  m[n].time = 100;
  n++;
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Defining a Frame

 The position of the robot in each frame 
can be described using any of the 
following:
 Position of the legs - in terms of angles of 

each joint or position of the foot in motion 
coordinates

 Angle of the head (tilt, pan, roll)
 Body height and angle
 Angle of the mouth

struct BodyState{
   BodyPosition pos;
   LegState leg[4];
   HeadState head;
   MouthState mouth;
};
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Joint Angle Limits
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Running Your Code
Edit: ~/dogs/agent/Motion/genmot/genmisc.cc

Compile the code:
     ~/dogs/agent/Motion/genmot> make

~/dogs/agent/Motion/genmot> ./genmot
>Kinemaric Errors=[0] [0]

                                       [0] [0]

Save motion to the stick:
      ~/dogs/agent/Motion/genmot> mount /memstick

~/dogs/agent/Motion/genmot> cp yourmotion.mot /memstick/motion/ k_bump.mot
~/dogs/agent/Motion/genmot> umount /memstick

In your code:
       command->motion_cmd = MOTION_KICK_BUMP;

Ignore these for now…


