
Actuators & Motion

Instructors: Prof. Manuela Veloso &

Dr. Paul E. Rybski

TAs: Sonia Chernova & Nidhi Kalra

15-491, Fall 2004

 http://www.andrew.cmu.edu/course/15-491

Computer Science Department

Carnegie Mellon University

15-491 CMRoboBits

Sony AIBO Robot

15-491 CMRoboBits

Intelligent Complete Robot

Action

Actuators

Perception

 External World

Sensors

Cognition

15-491 CMRoboBits

Robot Motion

 Forward and Inverse Kinematics
 PID Control
 Frame-Based Motions on the AIBO
 Modeling Effects of Motions

Forward Kinematics, Inverse
Kinematics, & PID Control in a Nutshell

15-491 CMRoboBits

Robotic Arms

Revolute Joint

Prismatic Joint

15-491 CMRoboBits

Forward Kinematics

 The problem: determine
the position of the end of
the robotic arm given θ1
and θ2

 Geometric Approach
 Algebraic Approach

15-491 CMRoboBits

A simple example
 Two links connected

by rotational joints to
a stable platform

 Given θ1 and θ2,
solve for a, b and θ

15-491 CMRoboBits

Solution
 Can be solved

trigonometrically:

a = l1 cos (θ1) + l2 cos(θ1 + θ2)

b = l1 sin (θ1) + l2 sin (θ1 + θ2)

Θ = θ1 + θ2

15-491 CMRoboBits

Denavit-Hartenberg Notation
 Assign each joint its own coordinate frame according to

some rules.
 Describe the motion of each frame relative to the

previous frame in terms of four parameters , a , d,
 Plug these values into the DH matrix to get

transformations from one coordinate frame to the next
 Get the final transformation matrix from the final frame

to the initial frame through a series of DH matrix
multiplications

[cosθi −sinθ i 0 a i−1

sinθ i cosα i−1 cosθi cosα i−1 −sinα i−1 −sinα i−1 d i
sinθ i sinα i−1 cosθi sinα i−1 cosα i−1 cosα i−1 d i

0 0 0 1
]

15-491 CMRoboBits

Inverse Kinematics

 Going backwards
 Find joint configuration given position &

orientation of tool (end effector)
 More complex (path planning &

dynamics)
 Usually solved either algebraically or

geometrically
 Possibility of no solution, one solution,

or multiple solutions

15-491 CMRoboBits

Another example

Lets assume l1 = l2

What is the configuration of
each joint if the end effector
is located at (l1, l2,-)?

(ie. Find θ1 and θ2)

15-491 CMRoboBits

Solution

θ1=0, θ2 = 90

Or

θ1=90, θ2 = 0

(Two Solutions)

15-491 CMRoboBits

The Math

 That was an
easy one… what
does the math
look like?

θ 1=arcsin l 2sin θ 2

 x2 y 2 arctan2 yx

c2=a 2b2−2ab cosC
 x2 y 2 =l

12l 22−2 l 1 l 2 cos 180−θ 2

cos 180−θ 2 =−cos θ 2

cos θ 2 =
x2 y 2−l

12−l 22

2 l 1 l 2

θ 2=arccos x2 y 2−l
12−l 22

2 l 1 l 2

15-491 CMRoboBits

Reachable Workspace

l1

l2

Joint Limits:

-180 ° ≤ θ1 ≤ 180°

-180 ° ≤ θ2 ≤ 180°

Reachable
Workspace

15-491 CMRoboBits

PID Control

 Proportional Integral Derivative Control
 The Basic Problem:

 We have n joints, each with a desired position which
we have specified

 Each joint has an actuator which is given a command
in units of torque

 Most common method for determining required
torques is by feedback from joint sensors

15-491 CMRoboBits

The Control Loop

e u

15-491 CMRoboBits

What is PID Control?

 Proportional, Integral, & Derivative Control
 Proportional: Multiply current error by constant to try to

resolve error

 Integral: Multiply sum of previous errors by constant to
resolve steady state error (error after system has
come to rest)

 Derivative: Multiply time derivative of error change by
constant to resolve error as quickly as possible

15-491 CMRoboBits

Summary

 These concepts make up the low level
functionality of the AIBO

 Implemented once and used repeatedly
 For more information about PID Control

and Forward & Inverse Kinematics take
Matt Mason’s Robotic Manipulation
course

15-491 CMRoboBits

The Motion Interface

15-491 CMRoboBits

AIBO Actuators
 18 degrees of freedom with a continuously

controllable range of motion
 3 DOF in each leg (12 total)
 3 DOF in the head
 2 DOF in the tail
 1 DOF in the jaw

 Each joint is controlled by specifying to a
desired joint angle to OVirtualRobotComm.

 2 binary motors for the ears
 A speaker for general sound production

15-491 CMRoboBits

Motor Control

 Each message to OVirtualRobotComm
contains a set of target angles for the joints
 Each target is used for a PID controller (part of

the OS) that controls each motor
 Each target angle is used for one 8ms motor

frame

 Each message contains at least 4 motor
frames (32ms)

15-491 CMRoboBits

The Motion Interface

Walk Engine

Walk Parameters

Frame Interpolator

Motion Frames

Dynamic Walking Motion Static Frame-Based Motion

15-491 CMRoboBits

Frame-Based Motion

 Each motion is described by a series of
“frames” which specify the position of the
robot, and a time to interpolate between
frames

 Movement between frames is calculated
through linear interpolation of each joint

15-491 CMRoboBits

Kicking

 A series of set positions for the robot
 Linear interpolation between the frames

 Kinematics and interpolation provided by
CMWalkEngine

 Set robot in desired positions and query
the values of the joints

15-491 CMRoboBits

15-491 CMRoboBits

Very Effective Kicks

15-491 CMRoboBits

Another Kick

15-491 CMRoboBits

High Sensitivity to Parameters
Good Settings for Effective Kick

15-491 CMRoboBits

High Sensitivity to Parameters
Exact Same Settings - Lab

15-491 CMRoboBits

High Sensitivity to Parameters
Good Settings for the Lab

15-491 CMRoboBits

Use of Kicks in Behaviors

 Modeling effects of kicking motions
 Ball vision analysis
 Ball trajectory angle analysis
 Kick strength analysis

 Kick selection for behaviors
 Selection algorithm
 Performance comparison

15-491 CMRoboBits

Accuracy of Object Detection Varies
-- Robot Standing --

500 1000 1500 2000 2500 3000 3500
-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400
Standing

Distance (mm)

15-491 CMRoboBits

Distance (mm)

Accuracy of Object Detection Varies
-- Robot Pacing --

15-491 CMRoboBits

-1000 0 1000 2000 3000 4000 5000
-3000

-2000

-1000

0

1000

2000

3000
Spinning

Distance (mm)

Accuracy of Object Detection Varies Accuracy of Object Detection Varies
– Robot Spinning --– Robot Spinning --

15-491 CMRoboBits

Ball Trajectory Angle

 Estimate the angle of the ball’s
trajectory relative to the robot

Track ball’s trajectory after the kick
Retain information about ball position in
each vision frame
Calculate angle of trajectory using linear
regression

15-491 CMRoboBits

Angle Analysis

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

5

10

15

20

25

Forward KickRight Head Kick Left Head Kick

15-491 CMRoboBits

Kick Strength

 Estimate the distance the ball will travel
after a kick.

Impossible to track entire path of the
ball
Calculate only the final location of the
ball relative to the kick position
Estimate failure rate of the kick using
distance threshold

15-491 CMRoboBits

Forward Kick Distance Analysis

0 1000 2000 3000 4000 5000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000
Forward Kick

15-491 CMRoboBits

Head Kick Distance Analysis

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000
-3000

-2000

-1000

0

1000

2000

3000
Normal Head Kick

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000
-3000

-2000

-1000

0

1000

2000

3000
Hard Head Kick

15-491 CMRoboBits

Kick Selection
 Incorporate the kick models into the selection

algorithm
 The robot knows its position on the field relative to

the goal and the desired ball trajectory
 The robot selects appropriate kick by referencing

the kick model
 If no kick fits desired criteria, robot selects closest

matching kick and turns/dribbles ball to
appropriate position

15-491 CMRoboBits

Kick Selection Performance

52.055.0P4

60.076.5P3

44.857.8Total

27.242.5P2

39.856.7P1

Modeling &
Prediction

(sec)

CMPack’02

(sec)

Point

Experiment Results

15-491 CMRoboBits

Kick Selection in Action

15-491 CMRoboBits

Summary

 Effectively moving a four-legged robot is
challenging

 Effectiveness of motion is highly
sensitive to motion parameters

 Ideally, we would like to set parameters
automatically.

15-491 CMRoboBits

Frame-Based Motion

15-491 CMRoboBits

Coordinate Frames

0

2 3

1y

x

y

x

Motion Coordinate Frame

Vision Coordinate Frame

a

a

15-491 CMRoboBits

Frame-Based Motion

 Each motion is described by a series of
“frames” which specify the position of the
robot, and a time to interpolate between
frames

 Movement between frames is calculated
through linear interpolation of each joint

15-491 CMRoboBits

Examples: Valid Motion Frames

 LegAng(b,0, 0.0, 1.5, 0.0);
 LegAng(b,1, 0.0, 1.5, 0.0);
 LegAng(b,2, 0.1, 0.0, 0.2);
 LegAng(b,3, 0.1, 0.0, 0.2);
 m[n].body = b;
 m[n].time = 100;
 n++;

 BodyPos(b,98,RAD(16));
 HeadAng(b, 0.5, 1.5, 0.0);
 MouthAng(b,-.7);
 LegPos(b,0, 123, 85,0);
 LegPos(b,1, 123,-85,0);
 LegPos(b,2, -80 , 75,0);
 LegPos(b,3, -80 ,-75,0);
 m[n].body = b;
 m[n].time = 100;
 n++;

 BodyPos(b,98,RAD(16));
 HeadAng(b, 0.5, 1.5, 0.0);
 LegPos(b,0, 123, 85, 0);
 LegPos(b,1, 123,-85, 0);
 LegAng(b,2, 0.1, 0.0, 0.2);
 LegAng(b,3, 0.1, 0.0, 0.2);
 m[n].body = b;
 m[n].time = 100;
 n++;

 m[n].body = b;
 m[n].time = 100;
 n++;

15-491 CMRoboBits

Defining a Frame

 The position of the robot in each frame
can be described using any of the
following:
 Position of the legs - in terms of angles of

each joint or position of the foot in motion
coordinates

 Angle of the head (tilt, pan, roll)
 Body height and angle
 Angle of the mouth

struct BodyState{
 BodyPosition pos;
 LegState leg[4];
 HeadState head;
 MouthState mouth;
};

15-491 CMRoboBits

Joint Angle Limits

15-491 CMRoboBits

Running Your Code
Edit: ~/dogs/agent/Motion/genmot/genmisc.cc

Compile the code:
 ~/dogs/agent/Motion/genmot> make

~/dogs/agent/Motion/genmot> ./genmot
>Kinemaric Errors=[0] [0]

 [0] [0]

Save motion to the stick:
 ~/dogs/agent/Motion/genmot> mount /memstick

~/dogs/agent/Motion/genmot> cp yourmotion.mot /memstick/motion/ k_bump.mot
~/dogs/agent/Motion/genmot> umount /memstick

In your code:
 command->motion_cmd = MOTION_KICK_BUMP;

Ignore these for now…

