Behaviors II – *Thinking*

Instructors: Prof. Manuela Veloso &

Dr. Paul E. Rybski

TAs: Sonia Chernova & Nidhi Kalra

15-491, Fall 2004

http://www.andrew.cmu.edu/course/15-491

Computer Science Department

Carnegie Mellon University

"Thinking"... Selecting Actions

- Sensory data as input
- "Behaviors" as processing of input to select actions
- Actuators perform the actions

Perception, Cognition, Action

- Deliberative three levels
 - Sense:
 - Construct world state from sensory data
 - Plan
 - Find a sequence of actions that lead from world state to a goal
 - Act
 - Transform planned actions for execution by actuators

Environment/Domain Issues

- Sensory accuracy
 - How reliable is the sensory input?
- Time
 - How much time is there "to think, plan"?
- Goal
 - How defined are the goals?
- Dynamics
 - How "worth" is to think ahead?

Advantages/Disadvantages of Deliberative Approach

- A plan.
- Let's brainstorm together.

Perception, Cognition, Action

- Reactive two levels
 - Sense:
 - Process sensory data into sensory information
 - No plan
 - Act
 - Sensory information is the direct input for execution by actuators

Advantages/Disadvantages of a Reactive Approach

Advantages

- Very responsive to changes in environment
- Smooth control changes in response to smooth changes in sensor values
- Disadvantages
 - Can't perform different actions from the same state
 - Can get stuck
 - Don't scale well to complex tasks

Memory in Reactive Approach?

- What does it mean to have memory?
- Brainstorm:
 - State, Markov, single observation, history of observations

Combining Reactive Behaviors

Blending

- Efficient if sensor values can be mapped into activation values easy to combine as "forces"
- Problem: equal but opposing forces can cancel each other out

Competition

- Similar to blending, but introduces "winner" behavior
- Problem: possible oscillations

Subsumption

- Provide a strict hierarchical priority ordering for the behaviors
- Problem: very dependent on definition of hierarchy

Sequencing

- Run a single reactive behavior and change with state FSM
- Problem: state granularity

Blending: Motor Schemas

Goal vector

Avoidance vector

Resulting vector

Competition

Goal vector

Avoidance vector

Subsumption

Goal vector

Wall follow vector

Example of Behavior/FSM

Three-Tiered Architectures

Deals with goals and resource interactions

Task decomposition; Task synchronization; Monitoring; Exception handling; Resource management

Deals with sensors and actuators

Path Planning

- Existence of a goal
 - Goto some goal point
- ERRT
 - Path planning
 - Smoothing
 - Memory

Replanning with Advice

Probability *p*: Extend closest node in tree towards goal

Probability *r*: Extend closest node in tree towards random cache point

Probability 1-p-r: Extend closest node towards a random point

Path Planning and Replanning

Behaviors: FSMs

Hysteresis

Handling Uncertainty

Hierarchy – Adding Scale

- In order to scale to large behaviors, we can reuse collections of lower-level behaviors
 - Libraries of lower-level behaviors form the building blocks for all AIBO behaviors
- Each state of FSM can be either a single reactive behavior, or another FSM with its own behaviors (or FSMs)

STP Behavior Architecture

- Skills single robot low-level atomic behaviors
- Tactics multi-skill combination for single robot goal achievement
- Plays multi-robot coordination by planned sequence of tactics

Adaptive Playbook Strategy Engine

- Plays
 - A multi-robot plan represented as a temporal sequence of parameterized tactics
- Playbook language
 - Human understandable
 - Easy to add new plays like a real coach

Role 0

- Dribble to P₁
- Pass to R₂
- Wait for loose ball

Role 1

- Wait for Pass at P₂
- Receive Pass
- Shoot

Play Selection—Opponent Learning

- Each play p_j has an associated weight w_j
- Stochastic play selection: from the set P_A of applicable plays with probability determined by w's

$$P(p*=p_j) = \frac{w_j}{\sum_{P_A} w_k}, \forall j \in P_A$$

- ABORT, SUCCESS, FAILURE conditions
- Weights are adapted online details later

Playbook adapts to the opponent without explicit modeling.

Replay Real Log – Tactic (< 1s)

Replay – Deflection Play (<1s)

Behaviors-II Conclusion

- Choice of behavior representation depends on conditions of the domain
- Ideally, planning ahead would be great
- Ideally, fast response to sensor changes
- Think well about which approach to take
- Homework: MasterMind.

