
Coevolving Market Strategies for CAT

Rahul Iyer and Joseph Reisinger

December 8, 2006

Abstract

We perform a preliminary exploration of the market mechanism strat-
egy space in CAT, focusing specifically on the charging policy. In addition
to hand-designing several strategies, we also employ coevolutionary policy
search to automatically generate novel charging policies. Coevolution is
a powerful method for facilitating open-ended search and has been shown
to generate robust solutions to complex problems. Furthermore, it can be
extended to provide monotonic progress guarantees, allowing for a natural
synthesis of guided and open-ended search. Although we are unable to
demonstrate evolved strategies that outperform the best hand-designed
strategies for a given parameter setting, coevolution has still been useful
as a tool for identifying which hand-designed strategies might perform
well in a particular setting. This paper summarizes our approach and
points out several areas of future work that should be explored to fully
characterize the application of coevolution to CAT. Ultimately we believe
that by bootstrapping from simpler hand-designed strategies, coevolution
can be leveraged to find strategies that perform well in a large variety of
environments.

1 Introduction

The Trading Agent Competition (http://www.sics.se/tac) was introduced to
promote research at the intersection of Artificial Intelligence (AI) and microeco-
nomics by providing complex benchmark environments for autonomous agents
to compete. Past competitions were directed towards the development and anal-
ysis of agent strategies that trade amongst themselves within a fixed market.
This year a new competition, TAC: Market Design (CAT), will be introduced
with the goal of generating novel market mechanisms themselves.

Mechanism design is a branch of economic game theory with the goal of
implementing game rules for maximizing some solution concept given a set of
agents with private preferences [7]. Mechanism design has received the most
attention in auction literature, for example most modern financial and trading
firms use a continuous double auction mechanism to facilitate trading, but it has
also been applied to several computational problems in distributed computing.
One interesting recent direction involves designing adaptive mechanisms that

1

implement solution concepts robustly in many different scenarios [9]. Indeed
the CAT competition is designed explicitly to further research into adaptive
mechanism design.

Market competition is generally believed to remove unwanted firms that are
not profit maximizers, resulting in equilibrium. For example, firms employ a
variety of pricing rules, but only those rules that provide a good approxima-
tion to profit maximization survive. Likewise, natural selection, occurring in
the process of evolution results in animal behavior that is well adapted to the
environment [15]. In the simplest case this environment is fixed, while in other
cases the environment is itself composed of other individuals who are subject
to the same forces of selection. What is optimal for any firm/animal in this
setting is to make its decision depending on the distribution of the behaviors in
the population with which it interacts. Coevolutionary theory allows us analyze
this process of evolutionary selection in such an interactive environment.

Coevolution has been successfully applied to both the development of bidding
agent strategies and the design of auction markets themselves [10]. In this work
we examine the application of coevolution to the design of adaptive market
mechanisms for facilitating commodity trading in CAT. Specifically, we attempt
to address several important questions:

• Does coevolution help elucidate which strategies may be optimal given the
market dynamics?

• Can coevolution be combined with simpler strategies in order to bootstrap
learning?

• Can evolved strategies beat simple dominating strategies in the long run?

• Can the application of artificial coevolution lead to novel strategies that
are both complex and robust?

To address these questions, we combine NeuroEvolution of Augmenting Topolo-
gies (NEAT), a powerful policy search reinforcement learning algorithm, with
several robust hand-designed market strategies in order to coevolve effective
market charging rules. NEAT represents solutions as neural networks: hierar-
chical combinations of sigmoid functions which are capable of approximating
any function. Using coevolution in this principled manner, we posit that the
space of market strategies can be explored more thoroughly than is possible
when designing them by hand.

This paper is organized as follows. Section 2 provides a brief overview of
the NEAT framework, how monotonic progress can be ensured in coevolution
and how such an algorithm can be applied to CAT. Section 3 provides results
comparing the evolved market with hand-designed strategies and gives learning
curves from the evolutionary process. Section 4 discusses some implications of
the work, section 5 summarizes areas for future work and section 6 concludes.

2

Competitive Coevolution through Evolutionary Complexification

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 3: The two types of structural mutation in NEAT. Both types, adding a connection
and adding a node, are illustrated with the genes above their phenotypes. The top number
in each genome is the innovation number of that gene. The bottom two numbers denote
the two nodes connected by that gene. The weight of the connection, also encoded in the
gene, is not shown. The symbol DIS means that the gene is disabled, and therefore not
expressed in the network. The figure shows how connection genes are appended to the
genome when a new connection and a new node is added to the network. Assuming the
depicted mutations occurred one after the other, the genes would be assigned increasing
innovation numbers as the figure illustrates, thereby allowing NEAT to keep an implicit
history of the origin of every gene in the population.

another in the system. The new connection gene created in the first mutation is assigned
the number 7, and the two new connection genes added during the new node mutation
are assigned the numbers 8 and 9. In the future, whenever these genomes crossover, the
offspring will inherit the same innovation numbers on each gene. Thus, the historical origin
of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation
numbers in the same generation if it occurs by chance more than once. However, by keeping
a list of the innovations that occurred in the current generation, it is possible to ensure that
when the same structure arises more than once through independent mutations in the
same generation, each identical mutation is assigned the same innovation number. Through
extensive experimentation, we established that resetting the list every generation as opposed
to keeping a growing list of mutations throughout evolution is sufficient to prevent an
explosion of innovation numbers.

Through innovation numbers, the system now knows exactly which genes match up
with which (Figure 4). Genes that do not match are either disjoint or excess, depending on
whether they occur within or outside the range of the other parent’s innovation numbers.
When crossing over, the genes with the same innovation numbers are lined up and are

71

Figure 1: NEAT genetic encoding and mutation operators. Neural network
topologies are directly encoded using a variable-length representation and undergo
topological complexification through the two structural mutation operators presented
here.

2 Coevolutionary Policy Search in CAT

Neural network strategies for setting fees are coevolved using the NEAT algo-
rithm and tested against a variety of hand-designed strategies. This section
is divided into 4 parts: Section 2.1 describes the NEAT framework and sec-
tion 2.2 describes the MaxSolve algorithm for ensuring monotonic progress in
coevolution. Section 2.3 describes the specific setup of the CAT market and
also explains how coevolution is performed in the system. Finally, section 2.4
describes the hand-designed fixed strategies tested.

2.1 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [12] is a policy-search rein-
forcement learning method that uses a genetic algorithm to find optimal neural
network policies. NEAT automatically evolves network topology to fit the com-
plexity of the problem while simultaneously optimizing network weights. NEAT
employs three key ideas: 1) incremental complexification using a variable-length
genome, 2) protecting innovation through speciation, and 3) keeping dimension-
ality small by starting with minimally connected networks. By starting with
simple networks and expanding the search space only when beneficial, NEAT is
able to find significantly more complex controllers than other fixed-topology
learning algorithms. This approach is highly effective: NEAT outperforms
other NE methods on control tasks like double pole balancing [12] and robotic
strategy-learning [13]. These properties make NEAT an attractive method for
evolving neural networks in complex tasks.

Each genome in NEAT includes a list of connection genes, each of which
refers to two node genes being connected. Each connection gene specifies the
in-node, the out-node, the weight of the connection, whether or not the connec-
tion gene is expressed (an enable bit), and an innovation number, which allows
finding corresponding genes during crossover (figure 1). Innovation numbers are
inherited and allow NEAT to perform crossover without the need for expensive

3

topological analysis. Genomes of different organizations and sizes stay compat-
ible throughout evolution, and the problem of matching different topologies [11]
is essentially avoided. NEAT speciates the population so that individuals com-
pete primarily within their own niches instead of with the population at large.
This way, topological innovations are protected and have time to optimize their
structure before they have to compete with other niches in the population. The
reproduction mechanism for NEAT is explicit fitness sharing [6], where organ-
isms in the same species must share the fitness of their niche, preventing any
one species from taking over the population.

The principled complexification exhibited by NEAT is a desirable property in
competitive coevolution: As the antagonistic populations refine their strategies
and counter-strategies, complexification becomes necessary in order to gener-
ate novel strategies without “forgetting” past strategies [13]. The next section
describes how monotonic progress can be guaranteed in coevolutionary NEAT.

2.2 Monotonic Progress in Coevolution

To ensure that the evolved specialists work well against a range of opponents,
the opponent strategies themselves are evolved simultaneously through coevo-
lution. In coevolution, an individual’s fitness is evaluated against some combi-
nation of opponents drawn from the evolving populations, rather than against
a fixed fitness metric. This approach yields several major benefits over tradi-
tional evolution: 1) Coevolution allows the opponent strategies to be learned
by the algorithm, reducing the amount of information the algorithm designer
must provide a priori, 2) Under certain conditions, coevolution may facilitate
arms races, where individuals in both populations strategically complexify in
order to learn more robust behaviors [14], 3) Coevolution may reduce the total
number of evaluations necessary to learn such robust strategies, leading to more
efficient search [2].

In order to facilitate arms races and make coevolution efficient, the algo-
rithm needs to ensure monotonic progress. Without such a guarantee, as evo-
lution progresses populations can “forget” past strategies, resulting in cycling
behavior [2, 4]. Before monotonic progress guarantees can be achieved, how-
ever, it is first necessary to define the desired solution concept. In game theory,
a solution concept is defined as “any rule for specifying predictions as to how
players might be expected to behave in any given game” [8]. In artificial coevo-
lution, since the dynamics of interactions between organisms can be controlled
using the fitness function, any desired solution concept can be implemented
by simply manipulating the structure of the fitness payoffs. Algorithms imple-
menting monotonic progress towards several such solution concepts have been
proposed: The Pareto-Optimal Equivalence Set (IPCA) [3], Nash Equilibria [5],
and Maximization of Expected Utility (MaxSolve) [2].

For the CAT domain, we employ a simplified variant of MaxSolve, a solution
concept for maximizing the expected utility of each individual. Such a solution
concept is useful in games where the space of opponent strategies cannot be fully
enumerated and thus generalizations regarding the utility of a strategy must be

4

drawn from a limited set of experiences. Formally, for a set of candidate solution
strategies C, a set of test strategies T and a game Γ = (Ai, ui)i∈I , the set of
strategies satisfying the maximization of expected utility solution concept can
be defined as

S1 = {C ∈ C|∀C′∈C : E(uC(C, T)) ≥ E(uC′(C ′, T))}

for some T ∈ T. Algorithmically, this solution concept can be implemented
simply by maximizing the sum of an individual’s utilities across all tests. Al-
though this formulation assumes that all tests are weighted equally, it has been
shown to perform well in practice [2].

2.3 Coevolving Adaptive Charging Policies in CAT

In addition to the actual auction mechanism, CAT specialist markets must
implement rules governing four basic policies, charging, shout accepting, clearing
and pricing.

• Charging : Each market charges the traders for executing various actions
in the market. The fees charged are for registration, information, shout
placement, transaction execution and a profit share. These fees are an-
nounced at the beginning of each game day and determine the profit made
by a market during the game.

• Shout Accepting : A shout is a bid placed by a bidder or an ask placed
by a seller. A market has to decide on a rule that determines if a shout
placed by a trader can be placed in the order books of the market.

• Clearing : The market has to determine a period in the course of the day to
clear the order books. Clearing is the process of matching as many possible
unmatched shouts and executing the transactions for the matched shouts.
In the standard implementation the market clears whenever a bid is higher
than ask. In general, the market must clear at least once in a day since
the order books are reset at the end of the day.

• Pricing : When a bid and an ask are matched, the market has to determine
the price for the commodity that is being traded. This price must be
between the bid value and the ask value.

For this paper, we focus only on finding charging policies for our market and
assume the following fixed strategies for the other policies:

• Pricing : A k-pricing policy is used with k = 0.5. Thus the price will
always be halfway between a matched bid and ask

• Shout Accepting : By default the CAT game assumes NYSE rules that
state that a shout can be accepted only if it improves the state of the
order books. New bids must be higher than all uncleared bids and for new
asks must be less than the current asks.

5

• Clearing : Whenever a new shout is placed the market is always cleared.

For the charging policy, neural network controllers are evolved for setting
the fees each day. Each network takes as input the average and standard devi-
ation of each fee value (information, shout, profit, transaction and registration)
set by the opponents in the previous day. Thus the architecture is fundamen-
tally reactive, although networks are capable of evolving recurrent connections,
which allow for a form of memory. Networks have five outputs corresponding
to each fee type; the final setting is scaled between zero and the maximum for
that fee. We decided to focus solely on the charging policy because it has the
most significant impact on the specialist profit. However, once robust charging
policies are found, the next logical step would be to implement more intelligent
pricing, clearing and accepting policies.

Evolved charging strategies are evaluated in matches with six specialists run
for 50 days. Only the last 15 days are counted towards the actual score. 100
trading agents are used, one half using the GD strategy and one half using
random constrained. Five of the specialists in each match are evolved and one
is a fixed strategy to ensure a minimum level of performance.

Specialist fitness within a single bout is calculated as

f(o) = po/ max(1, (phigh − po)),

where po is the final profit of the organism and phigh is the final profit of the
maximum scoring organism. Fitness is calculated as the sum of the scores
obtained during the MaxSolve evaluations and during N normal evaluations,

F (o) =
∑
d∈T

fd(o) +
N∑

i=0

fXi(o),

where o is the organism being evaluated and Xi is a random variable mapping i
to some combination of opponent strategies from the current population. In all
reported experiments, each organism plays 10 matches against randomly chosen
opponents from the current population (N = 10) and two matches against each
champion in the archive. The test archive is initially empty and new tests are
added each generation if the current generation champion’s fitness exceeds the
previous best fitness. This evaluation strategy focuses coevolutionary search on
individuals capable of performing well against all previous champion strategies.

2.4 Fixed Charging Strategies

In order to ensure a high safety level for the coevolved strategies, six different
basic strategies were implemented as fixed opponents:

• Fixed High: A fixed charging policy that sets fees at the maximum level

• Linear : A simple linear strategy that increases the fees linearly with re-
spect to the number of days elapsed.

6

• Exponential : A dynamic charging policy which ramps fees up exponen-
tially each day to a fixed maximum. A single parameter is used to control
the rate of increase.

• Logistic Growth: A dynamic charging policy where a logistic function is
used to model the growth of fees. Logistic functions can be defined as

N(t) = K/(1 + e−αt−β),

where K is the carrying capacity, the permissible value for the function,
α is the growth rate of the function, and β is the placement of the growth
along the x axis. For our experiments we use

α =
ln81
∆t

, β = −tmα.

These settings convert the general α-parameter to one that determines the
period in which the fee increases from the 10% level to the 90% level and
the β parameter to one that determines the mid-point of the curve i.e. the
point at which the function reaches half of the maximum value. Hence
the Logistic function used can be expressed as

N(t) = K/(1 + e−
ln(81)

∆t (t−tm)),

where K is the maximum fee level, ∆t is the time taken to grow from the
10% fee value to the 90% fee value and tm is the midpoint value, the point
at which the fee level is half of K.

• Trader Sensitive: Fees are increased when the number of trader regis-
tration increases. The percentage of traders registered to the market is
divided in to two discrete regions: low and high. On the basis of the level
of traders registered in the current day, the market fee level for the next
day is chosen from low, medium and high.

See figure 2 for a qualitative comparison of the growth of the various non-
adaptive strategies.

3 Results

Two separate sets of results were obtained, one set for preliminary competition
and one set for the final competition. Although these two competitions only
differed in terms of the maximum fee values for registration and information, the
two environments admit very different sets of optimal strategies. In particular,
a fixed high charging strategy outperforms the exponential strategy under the
initial settings, but the exponential and other ramping strategies beat fixed high
in the final settings. In both cases, the distribution of traders participating in
the markets had little impact on the market dynamics.

7

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

F
ee

 v
al

ue
 (

in
 p

er
ce

nt
ag

e
of

 m
ax

im
um

 fe
es

)

Days

Logistic Growth
Exponential
Fixed High

Linear

Figure 2: Fee growth schedules for the hand-coded strategies.

3.1 Basic Strategies

To evaluate the logistic growth strategy, we compared it with the exponential
function which was the dominant strategy in the new evolutionary runs. The
results indicate that the logistic function with the right parameters performs
significantly better than the exponential strategy and the fixed high strategy.

Three different parameter settings of the logistic growth strategy were played
against the Fixed High and the Exponential strategy.

• LOG-HIGH: Midpoint(tm) = 0.7, Growth period(∆t) = 0.1

• LOG-MID: Midpoint(tm) = 0.5, Growth period(∆t) =0.4

• LOG-LOW: Midpoint(tm) =0.3, Growth period(∆t) =0.7

Figures 3 and 4 show the average trader and profit distribution over 30 games
for the initial and final settings respectively . Each game has a game length of
100 days with the profit recorded for a random sample of days (30 to 50 days)
chosen from the second half of the game.

8

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

P
ro

fi
t

Day

Profit Per Day (Initial Settings)

DayExponential
FixedHigh
Logistic 1
Logistic 2
Logistic 3

Neural Net

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
T

ra
d

e
rs

Day

Traders Per Day (Initial Settings)

Figure 3: Average profit and trader distribution for basic strategies for the
initial settings. Logistic 1 corresponds to LOG-HIGH, Logistic 2 corresponds
to LOG-LOW and Logistic 3 corresponds to LOG-MID.

9

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

P
ro

fi
t

Day

Profit Per Day (Final Settings)

DayExponential
FixedHigh
Logistic 1
Logistic 2
Logistic 3

Neural Net

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
T

ra
d

e
rs

Day

Traders Per Day (Final Settings)

Figure 4: Average profit and trader distribution for basic strategies for the
final settings. Logistic 1 corresponds to LOG-HIGH, Logistic 2 corresponds to
LOG-LOW and Logistic 3 corresponds to LOG-MID

10

Strategy Average Profit (Initial) Average Profit (Final)
LOG-LOW 1393.68 343.02
LOG-MID 1031.70 254.830
LOG-HIGH 1358.12 388.12
Exponential 930.40 333.74
Fixed High 883.71 263.46

Table 1: Average profit for basic strategies over 30 games. The profit was
recorded for a random period of 30 to 50 days

Figure 3 demonstrates how the Neural Net developed using Fixed High as the
dominant strategy follows the fixed high curve very closely in terms of traders
and profit. However the logistic markets maintain higher profit by ensuring
a high number of traders. Similarly in Figure 4 we can see that LOG-HIGH
maintains a high number of traders and hence ends up with a sizeable profit.

It should be noted that in both the cases, the logistic function markets are the
winners only because the second half of the game is used for profit calculation.
If the entire game is used for profit comparison then the fixed high strategy
performs better. The average profits made per day by each strategy are given
in Table 1.

Pairwise t-tests were used to test the significance of these results. A summary
of the results is shown below. Here the probability p is the probability of the
significance result being incorrect due to noise.

Initial Settings:

1. All Logistic functions significantly outperform Fixed High (p < 4.6× 10−5)

2. LOG-HIGH and LOG-LOW significantly outperforms Exponential (p < 4× 10−6)

3. LOG-HIGH significantly outperforms LOG-MID (p < 2× 10−5)

4. LOG-MID does not show significant improvement over Exponential (p > 0.1)

5. Exponential and Fixed High do not have any significant difference in per-
formance (p > 0.3)

Final Settings:

1. LOG-LOW and LOG-HIGH significantly outperforms Fixed High (p <
4.6× 10−5)

2. LOG-HIGH significantly outperforms Exponential (p < 0.018)

3. LOG-HIGH significantly outperforms LOG-MID (p < 1× 10−6)

4. LOG-MID and LOG-LOW do not show significant improvement over Ex-
ponential (p > 0.8)

5. Exponential significantly outperforms Fixed High (p < 0.00065)

11

Strategy Average Profit (Initial) Average Profit (Final)
LOG-HIGH x 449.06
LOG-LOW x 358.62
Exponential 967.40 324.87
Fixed High 1263.27 297.23
NN 14 x 181.87
NN 42 x 267.55
NN 104 1279.66 x

Table 2: Performance of evolved strategies vs. fixed strategies. An ‘x’ indicates
that the strategy was not run under that set of conditions. NN104 is the cham-
pion of the initial coevolutionary run and NN42 is the champion from the final
coevolutionary run.

3.2 Evolved Strategies

Learning curves for the two evolutionary runs (initial and final settings) are
given in figure 5. Both runs exhibit a high amount of variance in champion
scores, indicating that more trials should be run to improve confidence. Also,
both runs exhibit a positive slope in average fitness, indicating that neither run
converged.

Table 3 compares the champions of the two coevolutionary runs to the best
performing basic strategies. Under the initial settings, the best neural network
found (NN104) does not make a profit significantly different from the fixed
high strategy (p = 0.81). However, the neural network is able to significantly
outperform the exponential ramping strategy (p < 10−3). Under the final pa-
rameter settings, the exponential strategy performs significantly better than the
best neural network found (NN42; p < 0.012). Furthermore, the LOG-HIGH
strategy significantly outperforms the exponential (p < 10−5). Finally, it is
important to note that in the second run, the neural network champion from
generation 42 (NN42) significantly outperforms the champion from generation
14 (NN14; p < 10−6), indicating that evolution is indeed improving upon past
solutions. Plots depicting specialist profits and number of traders per day under
the final settings are given in figure 6.

4 Discussion

Comparing the basic strategies it can be seen that the Exponential strategy
outperforms the Fixed High strategy for the final settings but is unable to beat
it significantly in the initial settings. However the logistic strategy outperforms
the exponential and the fixed high strategies for both the settings of fee level.
Logistic maintains a low fee value initially and then ramps up its fee level after
attracting a high number of traders. This strategy generates high profit because
traders do the majority of their exploration in the first 20 days and are thus
mostly exploiting in the latter half of the game and cannot learn quickly enough

12

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100 120

F
it
n

e
s
s

Generation

Learning Curve: Preliminary Settings

average
best

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45

F
it
n
e
s
s

Generation

Learning Curve: Final Settings

average
best

Figure 5: Learning curve for coevolution with the initial and final settings. In
the initial case, evolved agents quickly learn to mimic the fixed high strategy,
but cannot outperform it. In the final case, evolved markets are unable to beat
the exponential charging strategy.

13

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

P
ro

fi
t

Day

Profit Per Day (Final Settings)

Logistic 1
FixedHigh

DayExponential
Logistic 2

Neural Net 14
Neural Net 42

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
T

ra
d

e
rs

Day

Traders Per Day (Final Settings)

Figure 6: With the final parameter setting, the evolved neural network strategies
perform consistently as well as fixed-high, but cannot outperform the exponen-
tial or logistic strategies.

14

about the sudden increase in the fees. The ideal rate of growth and the place-
ment of the growth across the game depends on the game parameters used. The
LOG-HIGH strategy has a late growth of fees but with a high rate of growth,
a form of trigger strategy that jumps from 0 fees to the maximum fees with-in
a span of a day. It is not completely obvious if this is the best strategy for any
given setting. We have also not found any significant results that distinguish
the performance of the LOG-LOW and LOG-MID function from each other.
This demonstrates that the exact parameters that lead to consistent success
are difficult to find and indeed may not even exist for a sufficient large subset
of environments. Such difficulties indicate that coevolution may indeed be a
practical approach to finding the most robust set of parameters.

Coevolution is able to approximate the fixed-high strategy under both pa-
rameter settings but is unable (at least in 40 generations) to significantly out-
perform the exponential ramp strategy. However the second coevolutionary run
shows some promise as the champion from generation 42 significantly outper-
forms the champion from generation 14. Thus, if evolution were run for longer,
then it may learn more powerful strategies.

The evolved neural net strategies exhibit few signs of adaptive behavior in
the profit graph. In general the strategy employed by the neural network is
to charged at a fixed high rate, regardless of the fees of the other competitors.
Always charging high is a rather effective strategy that is easy for evolution to
find and thus it tends to dominate early evolution. One reason such a strategy
might be preferred may be due to the bias generated by the inputs. Other inputs,
such as the current day, may help the neural network find more complex adaptive
strategies more easily. Without such inputs, in order to find strategies such as
the exponential ramp, the neural network must evolve recurrent connections
on each output, which is highly improbable at least in the first few hundred
generations.

Finally, the general lack of robustness and statistical significance in evalu-
ations (profit is recorded during a fixed portion of the day, networks only get
10 random evaluations) may have washed out the search gradient towards more
complex solutions in noise. The fixed high strategy is easy to find regardless of
the amount of noise, but finding more complex strategies would require more
sensitivity to small changes in fitness, which is not possible with the number
of evaluations used. In the future, more evaluations should be performed per
network, although doing so would increase the learning time.

5 Future Work

Based on the results obtained in this study, several immediate improvements to
the search algorithm suggest themselves:

• One problem with the current coevolutionary setup is that each strategy
only plays on average two matches against the champion strategies. Com-
bined with the fixed weighting of champions as fitness objectives, this
approach does not give clear indication of which champions are strictly

15

better than othes. In order to maintain more accurate scores for each
champion, but still keep the total number of evaluations low, each cham-
pion score should be associated with a confidence level. The confidence
level would increase with each subsequent evaluation and could be then
used to assign a relative weight to each champion as an objective in the
final fitness function.

• Currently the neural networks are given as input only the first and second
moments of the distribution of fee values. What other kinds of inputs
might be useful? Possible candidates include higher moments, the current
game day, the game parameters used and deltas on the fee values. Also
for games with a fixed number of opponents it is possible to give each
opponent value for each fee as a separate input, instead of computing the
average and variance.

• Finally, the homogeneous environments with fixed game lengths are ex-
ploitable by simple trigger strategies which charge nothing until the final
15 days of the game and then charge maximum. Although no instances
of such an exploitative strategy were seen during evolution, in general,
running longer games with a random game length and more varied agent
environments should help improve the robustness of the evolved strategies.

One possible next step for this research would be to evolve the parameters
of a fixed ramping strategy based on the logistic curve. The ramping strategy
seems to be powerful for interesting parts of the competition space, but for a
given range of CAT settings different parameterizations of the exponential would
be optimal. Coevolution would be able to find the optimal parameterizations
that are robust across many different opponent settings. Furthermore, once the
optimal simple charging strategy is found, it could be used to guide open-ended
coevolution for more complex charging functions. Such an approach highlights
an important strength of the coevolutionary method: Evolution can be run on
top of existing strategies. In other words, if a market strategy is developed that
performs well, then that strategy can be added to the mix of fixed opponents
that the evolutionary agent must learn to overcome.

In the longer term, it would be interesting to explore other coevolutionary
solution concepts to see what impact they have on the market strategies found.
In addition to the MaxSolve algorithm, several coevolutionary solution concepts
have been defined, including the Nash Memory mechanism [5] and the Pareto-
Optimal Equivalence Set [3]. Also in the CAT domain there may be room for
collusive strategies that rely on one or more specialists dominating the market
to the exclusion of the others. Using a solution concept based on the Shapely
Value, it may be possible to evolve such behavior.

Although the charging policy has the most direct impact on a market’s
profits, there are several other aspects of the mechanism that might be adapted,
e.g. the trade clearing policy and the pricing policy. Automated markets catering
to automated traders may be able to manipulate these policies to extract more
profit from the traders. One possible approach would be to tailor pricing and

16

clearing on a per-agent basis, extracting more surplus from more successful
traders and offering incentives to less successful ones. It would not have been
possible to implement these strategies in the beta version of the competition;
however, with the latest version providing more flexibility, it would be interesting
to see if coevolution can make an impact at these aspects of the game.

It has been shown that Genetic Algorithm can be used to evolve a market
mechanism more efficient than human-designed markets [1]. It would be in-
teresting to apply that research in order to evolve market rules for the CAT
competition. A hybrid between a one-sided and a two-sided market, more effi-
cient than any human designed market, could be developed through evolution
and can be the trading portal for the future.

6 Conclusion

This work serves as an exploratory analysis of the feasibility of applying coevolu-
tion to explore simple CAT strategies. Experimental results demonstrated that
coevolution is able approximate strong basic strategies in CAT with high maxi-
mum fees but is unable to consistently beat more complex strategies in the low
maximum fees environment within 40 generations. Poor performance of evolved
controllers is due to three factors: 1) high variance in fitness scores, 2) short
evolutionary runs with small populations and 3) the lack of inputs indicating
the current game day (such an input would allow the neural network to learn
strategies that are not purely reactive). The significantly higher earnings of the
logistic growth charging policy indicate that one possible research direction is
to coevolve more constrained charging functions. These results are a promising
start for developing coevolutionary mechanisms for exploration of simple CAT
strategies.

References

[1] D. Cliff. Evolution of market mechanism through a continuous space of
auction-types. Technical Report HPL-2001-326, HP Labs, 2001.

[2] E. de Jong. The maxsolve algorithm for coevolution. In GECCO ’05: Pro-
ceedings of the 2005 Conference on Genetic and Evolutionary Computation,
pages 483–489, New York, NY, USA, 2005. ACM Press.

[3] E. D. de Jong. The incremental pareto-coevolution archive. In GECCO ’04:
Proceedings of the 2004 Conference on Genetic and Evolutionary Compu-
tation, pages 525–536. Springer, 2004.

[4] S. G. Ficici. Monotonic solution concepts in coevolution. In GECCO ’05:
Proceedings of the 2005 Conference on Genetic and Evolutionary Compu-
tation, pages 499–506, New York, NY, USA, 2005. ACM Press.

17

[5] S. G. Ficici and J. B. Pollack. A game-theoretic memory mechanism for co-
evolution. In GECCO ’03: Proceedings of the 2003 Conference on Genetic
and Evolutionary Computation, pages 286–297, 2003.

[6] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for
multimodal function optimization. In J. J. Grefenstette, editor, Proceedings
of the Second International Conference on Genetic Algorithms, pages 148–
154. San Francisco: Kaufmann, 1987.

[7] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford
University Press, US, 1995.

[8] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University
Press, Cambridge, MA, 1991.

[9] D. Pardoe, P. Stone, M. Saar-Tsechansky, and K. Tomak. Adaptive mech-
anism design: a metalearning approach. In ICEC ’06: Proceedings of the
8th international conference on Electronic commerce, pages 92–102, New
York, NY, USA, 2006. ACM Press.

[10] S. Phelps, P. McBurney, S. Parsons, and E. Sklar. Co-evolutionary auction
mechanism design: A preliminary report. In AAMAS ’02: Revised Papers
from the Workshop on Agent Mediated Electronic Commerce on Agent-
Mediated Electronic Commerce IV, Designing Mechanisms and Systems,
pages 123–142, London, UK, 2002. Springer-Verlag.

[11] N. J. Radcliffe. Genetic set recombination and its application to neural net-
work topology optimization. Neural computing and applications, 1(1):67–
90, 1993.

[12] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[13] K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolu-
tionary complexification. Journal of Artificial Intelligence Research, 21:63–
100, 2004.

[14] L. Van Valin. A new evolutionary law. Evolution Theory, 1:1–30, 1973.

[15] J. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

18

