## CS395T

## Agent-Based Electronic Commerce Fall 2006

Peter Stone

Department or Computer Sciences
The University of Texas at Austin
Week 4a

## Good Afternoon, Colleagues

Are there any questions?

## Good Afternoon, Colleagues

Are there any questions?

- Open vs. closed loop strategies
- Collusion
- Realism


## Logistics

- Thursday class in RAS 312


## Logistics

- Thursday class in RAS 312
- SCM readings


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen
- Define a Nash equilibrium (what do you need to know)?


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen
- Define a Nash equilibrium (what do you need to know)?
- Define a Bayes-Nash equilibrium (what do you need to know)?


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen
- Define a Nash equilibrium (what do you need to know)?
- Define a Bayes-Nash equilibrium (what do you need to know)?
- Is there a dominant strategy equilibrium?


## Bayes Nash Equilibrium

- Allows for uncertainty about opponent type
- Consider 1st price auction for my pen
- Define a Nash equilibrium (what do you need to know)?
- Define a Bayes-Nash equilibrium (what do you need to know)?
- Is there a dominant strategy equilibrium?
- What if I tell you, I'll take what you tell me as your value and compute for you the correct thing to do given what other people bid?


## Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum


## Incomplete Information Games

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Card ?

$$
\begin{array}{ccc} 
& \mathrm{R} & \mathrm{~F} \\
\mathrm{R} & 5,-5 & 1,-1
\end{array}
$$

Card 3

$$
\begin{array}{ll}
F & -1,1
\end{array}
$$

## Incomplete Information Games

|  | Card ? |  |
| :---: | :---: | :---: |
|  | R |  |
| R | $5,-5$ | $1,-1$ |

Card 3

$$
\text { F } \quad-1,1
$$

$$
0,0
$$

## Incomplete Information Games

|  | Card ? |  |
| :---: | :---: | :---: |
|  | R |  |
| R | $5,-5$ | $1,-1$ |

Card 3

F $\quad-1,1 \quad l$|  |  |
| :--- | :--- |
|  |  |
|  | Card ? |

R F

R $-5,5$
$1,-1$
Card 1
F
$-1,1$
0,0

## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2 )


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$ ?


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$ ?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$ ?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2)
- $2 \Rightarrow$ ?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold


## Bayes-Nash Equilibrium

- $3 \Rightarrow$ raise
- $1 \Rightarrow$ fold (no matter what the other one does with 2 )
- $2 \Rightarrow$ ?
- Raise: $(.5)(-5)+(.5)(1)=-2$
- Fold: $(.5)(-1)+(.5)(0)=-.5$
- Always fold!
- Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

## Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back


## Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?


## Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?
- Ex ante, yes
- Ex post, no


## Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

|  | utility |
| :--- | ---: |
| camera alone | $\$ 50$ |
| flash alone | 10 |
| both | 100 |
| tripod | 20 |

## Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

|  | utility |
| :--- | ---: |
| camera alone | $\$ 50$ |
| flash alone | 10 |
| both | 100 |
| tripod | 20 |


|  | utility |
| :--- | ---: |
| camera | $\$ 60$ |
| flash | 20 |
| tripod | 30 |

## questions

- Assume quasi-linear values, etc.
- What is the allocation?


## questions

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?


## questions

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?


## questions

- Assume quasi-linear values, etc.
- What is the allocation?
-What are the payments?
- Why is it strategy proof?
- What are choice set monotonic, negative externality, single-agent effects?


## Computational considerations

-Why is this mechanism a burden on the bidders?

## 28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices random walk; immediate clear; no resale


## 28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early; "beat the quote"


## 28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

- Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early; "beat the quote"

Entertainment: MU/AP/AW days 1-4 (12)

- Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed


## Client Preferences and Utility

## Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values


## Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) - travel penalty + hotel bonus

+ entertainment bonus


## Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) - travel penalty + hotel bonus

+ entertainment bonus
Score: Sum of client utilities - expenditures

