CS395T Agent-Based Electronic Commerce Fall 2006

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 4a

Good Afternoon, Colleagues

Are there any questions?

Good Afternoon, Colleagues

Are there any questions?

- Open vs. closed loop strategies
- Collusion
- Realism

• Thursday class in RAS 312

- Thursday class in RAS 312
- SCM readings

• Allows for uncertainty about opponent **type**

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?

- Allows for uncertainty about opponent **type**
- Consider 1st price auction for my pen
 - Define a Nash equilibrium (what do you need to know)?
 - Define a Bayes-Nash equilibrium (what do you need to know)?
 - Is there a dominant strategy equilibrium?
 - What if I tell you, I'll take what you tell me as your value and compute for you the correct thing to do given what other people bid?

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

	Card ?			
		R	F	
Card 3	R	5,-5	1,-1	
	F	-1,1	0,0	
Card ?				
		R	F	
Card 1	R	-5,5	1,-1	
	F	-1,1	0,0	

• $3 \Rightarrow raise$

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 \Rightarrow ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

Ex ante vs. ex post

• Mechanism: each of you give me \$1, one gets \$100 back

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?

Ex ante vs. ex post

- Mechanism: each of you give me \$1, one gets \$100 back
- Individually rational?
- Ex ante, yes
- Ex post, no

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	utility
camera alone	\$50
flash alone	10
both	100
tripod	20

Vickrey-Clarke-Groves

- Groves: efficient, stategy-proof
- Pivotal: individually-rational

	utility
camera alone	\$50
flash alone	10
both	100
tripod	20

	utility
camera	\$60
flash	20
tripod	30

- Assume quasi-linear values, etc.
- What is the allocation?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?

- Assume quasi-linear values, etc.
- What is the allocation?
- What are the payments?
- Why is it strategy proof?
- What are choice set monotonic, negative externality, single-agent effects?

Computational considerations

• Why is this mechanism a burden on the bidders?

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices random walk; immediate clear; no resale

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early; "beat the quote"

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early; "beat the quote"

Entertainment: MU/AP/AW days 1-4 (12)

 Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
- Utility: 1000 (if valid) travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures

