CS395T Agent-Based Electronic Commerce Fall 2006

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 4a

- How can you measure progress
 - Why no hotel/ent in global optimization (29)
 - Why better global efficiency?

- How can you measure progress
 - Why no hotel/ent in global optimization (29)
 - Why better global efficiency?
- Realism: how well do designs transfer?

- How can you measure progress
 - Why no hotel/ent in global optimization (29)
 - Why better global efficiency?
- Realism: how well do designs transfer?
- Collusion: does it happen?

- How can you measure progress
 - Why no hotel/ent in global optimization (29)
 - Why better global efficiency?
- Realism: how well do designs transfer?
- Collusion: does it happen?
- Did agents know identities of others?
- Open vs. closed loop strategies
- Does reasoning about timing help?

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early; "beat the quote"

Entertainment: MU/AP/AW days 1-4 (12)

 Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
- Utility: 1000 (if valid) travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures

• Needed to compare small numbers of games

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 - 1. total client preferred travel days
 - 2. total entertainment values
 - 3. ratio of "easy" days (1 and 4) to hard (2 and 3) in preferred trip intervals

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 - 1. total client preferred travel days
 - 2. total entertainment values
 - 3. ratio of "easy" days (1 and 4) to hard (2 and 3) in preferred trip intervals
- Regression analysis to compute factors for individual games

Given holdings, prices, determine G^* : Optimal complete itinerary assignments

• Greedy solution?

- Greedy solution?
- Mixed-integer LP with 3 constraints:

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);
 "Draw ob and beying d" external ustrage
 - "Branch and bound" over adjustments for 3

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);
 "Branch and bound" over adjustments for 3
- Globally optimal solution; usually < .01 sec

• ATTac and Roxybot

- ATTac and Roxybot
- Did agents know identities of others?

Controlled experiments from ATTac-2000

ATTac vs. non-adaptive high and low bidders

#high	agent 2	agent 3	agent 4	agent 5	agent 6	agent 7	agent 8
7	~	9526				→	
6	<u> </u>	10679			\rightarrow		1389
5		10310		\longrightarrow		~	2650
4	<i>←</i>	10005		\rightarrow	~		4015
3	<i>←</i>	5067	\longrightarrow		<		3639
2	~	209		· · · · · · · · · · · · · · · · · · ·			2710

Controlled experiments from ATTac-2000

ATTac vs. non-adaptive high and low bidders

#high	agent 2	agent 3	agent 4	agent 5	agent 6	agent 7	agent 8
7	~	9526				→	
6		10679			\rightarrow		1389
5		10310		\longrightarrow		~	2650
4	<i>←</i>	10005		\rightarrow	~		4015
3	<i>←</i>	5067	\longrightarrow		· · · · · · · · · · · · · · · · · · ·		3639
2	<	209		· · · · · · · · · · · · · · · · · · ·			2710

- Shows ATTac's average score difference
- ATTac adapts over successive runs
- All numbers positive, most are significant

• Todd on hotel price prediction

• ATTac01's strategy

- ATTac01's strategy
- Open vs. closed loop experiments

• Sample Average Approximation

- Sample Average Approximation
- A standard stochastic optimization technique

- Sample Average Approximation
- A standard stochastic optimization technique
- Generate a set of sample scenarios (prices)

- Sample Average Approximation
- A standard stochastic optimization technique
- Generate a set of sample scenarios (prices)
- Solve an approximation of the problem that incorporates only the sample scenarios.

- Sample Average Approximation
- A standard stochastic optimization technique
- Generate a set of sample scenarios (prices)
- Solve an approximation of the problem that incorporates only the sample scenarios.
- Heuristics defined in chapter 5 (book.pdf in same place)

• Iterated prisoner's dilemma with identity

- Iterated prisoner's dilemma with identity
- What if you play infinitely?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?

- Iterated prisoner's dilemma with identity
- What if you play infinitely?
- What if you play for a known finite amount of time?
- Some strategies:
 - hawk (always Fink)
 - Grim trigger (cooperate until the other defects)
 - tit-for-tat
 - Joss (tit-for-tat with periodic defection)

