CS395T Agent-Based Electronic Commerce Fall 2006

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 8b

Good Afternoon, Colleagues

Are there any questions?

Stopping Rules, Activity Rules

Goal: Fast auction; simultaneous closings; simple

- Close licenses separately, but slow down bidding on each one as final prices are approached.
- Close the core "big" licenses first and simultaneously, then the smaller ones separately.
 - efficiency on big licenses, speed after that.
- Simultaneous close, but require activity
 - Activity on a license: bid placed or previous high bid
 - Low activity lowers *eligibility*
 - Eligibility bounds what you can bid on
 - Activity requirements increase as time goes on

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate

• Identify variables, but not relative magnitudes

- Conflicting effects \Rightarrow can't tell which will dominate

• Ignores transaction costs of implementing policies

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

- Identify variables, but not relative magnitudes
 - Conflicting effects \Rightarrow can't tell which will dominate
- Ignores transaction costs of implementing policies
- May depend on unknown information
 - e.g. bidder valuations
- Doesn't scale to complexity of spectrum auctions

Bidders can be counted on to seek ways to outfox the mechanism — Milgrom p. 150 (top)

Used laboratory experiments too

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

• Designated entities also didn't work

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

• Designated entities also didn't work

• How do you evaluate whether an auction succeeded?

- Dutch auction (top of p.27)
- Low competition, declining opening bids
- What went wrong?

• Designated entities also didn't work

- How do you evaluate whether an auction succeeded?
 - Or even better, whether it **will** succeed?

• High complexity estimates

- High complexity estimates
- What's so hard?

- High complexity estimates
- What's so hard?
 - 492 licenses $\Rightarrow > 10^{148}$ combinations.

- High complexity estimates
- What's so hard?
 - 492 licenses $\Rightarrow > 10^{148}$ combinations.
- 700 MHz never happened

Human factors

• CEO allows fears to control strategy

Human factors

- CEO allows fears to control strategy
- Throwing good money after bad
 - German auction
 - Auction 35 (p.27,28)

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched
- 3 bidders, 100 items
- \$5 \Longrightarrow all demand 100

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched
- 3 bidders, 100 items
- \$5 \Longrightarrow all demand 100
- \$20 \Longrightarrow demand of 45, 50, 55

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched
- 3 bidders, 100 items
- \$5 \Longrightarrow all demand 100
- \$20 \Longrightarrow demand of 45, 50, 55
- 3rd bidder gets 5 units for \$20

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched
- 3 bidders, 100 items
- \$5 \Longrightarrow all demand 100
- \$20 \Longrightarrow demand of 45, 50, 55
- 3rd bidder gets 5 units for \$20
- Continue
- Like VCG, price independent of bid \implies incentive compatible

- Auctioneer raises prices and each announces demand
- If aggregate demand of rivals less than supply, some units clinched at that price
- Continue until all units clinched
- 3 bidders, 100 items
- \$5 \Longrightarrow all demand 100
- \$20 \Longrightarrow demand of 45, 50, 55
- 3rd bidder gets 5 units for \$20
- Continue
- Like VCG, price independent of bid \implies incentive compatible
- Dynamic, so more transparent than VCG (good for dependent values)

• Honain Khan on auctions vs. beauty contests

• Simulator built previously to exactly match auction rules

- Simulator built previously to exactly match auction rules
- We had to define:
 - How many agents
 - Their values
 - Their knowledge of each other's values
 - Their strategies

- Simulator built previously to exactly match auction rules
- We had to define:
 - How many agents
 - Their values
 - Their knowledge of each other's values
 - Their strategies
- Started out as an exploration of strategy space in the simulator

• Long, iterative process

- Long, iterative process
- Not a stationary target

- Long, iterative process
- Not a stationary target
- Unclear how reliable the info is

- Long, iterative process
- Not a stationary target
- Unclear how reliable the info is
- The auctions are a poker game!

Market Values

• Secondary bidders

Market Values

- Secondary bidders
- Merill Lynch report

Market Values

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2
 - p.292: \$5M * 30M pop * 10 mhz * 1.05 (priority) = \$1.575B

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2
 - p.292: \$5M * 30M pop * 10 mhz * 1.05 (priority) = \$1.575B
- No inter-market dependencies

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2
 - p.292: \$5M * 30M pop * 10 mhz * 1.05 (priority) = \$1.575B
- No inter-market dependencies
- Uncertainties assume reasonably good knowledge

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2
 - p.292: \$5M * 30M pop * 10 mhz * 1.05 (priority) = \$1.575B
- No inter-market dependencies
- Uncertainties assume reasonably good knowledge
 - Agent is told a perturbed value from actual value

- Secondary bidders
- Merill Lynch report
- Random goals based on a realistic model
- Priorities = how many you want
 - Assumed no more than 2
 - p.292: \$5M * 30M pop * 10 mhz * 1.05 (priority) = \$1.575B
- No inter-market dependencies
- Uncertainties assume reasonably good knowledge
 - Agent is told a perturbed value from actual value
 - Used to compute *satisfaction*

- I value A at \$30 and B at \$35
- You value A at \$1 and B at \$30

- I value A at \$30 and B at \$35
- You value A at \$1 and B at \$30
- I have \$40 at most to spend

- I value A at \$30 and B at \$35
- You value A at \$1 and B at \$30
- I have \$40 at most to spend
- What is the obvious (efficient) outcome?
 - How much utility?

- I value A at \$30 and B at \$35
- You value A at \$1 and B at \$30
- I have \$40 at most to spend
- What is the obvious (efficient) outcome?
 - How much utility?
- How can you do better?

Fairing and cheater detection

• How is ownership "transfered?"

Fairing and cheater detection

- How is ownership "transfered?"
- How were the magic numbers determined?

• Does/can PRSDR lead to an efficient outcome?

- Does/can PRSDR lead to an efficient outcome?
- Is it a dominant strategy in this domain?

- Does/can PRSDR lead to an efficient outcome?
- Is it a dominant strategy in this domain?
- Why are the game matrices representative?

- Does/can PRSDR lead to an efficient outcome?
- Is it a dominant strategy in this domain?
- Why are the game matrices representative?
- Is SDR illegal?

- Does/can PRSDR lead to an efficient outcome?
- Is it a dominant strategy in this domain?
- Why are the game matrices representative?
- Is SDR illegal? What about publishing PRSDR?

- You have 30 old textbooks
 - Sell as a group, or one volume at a time?
 - What if they're volumes of a dictionary?
- How would you build/test a theory of allocations?

• Any comments about particular moves by the bidders?

- Any comments about particular moves by the bidders?
- Why did WirelessCo bid-withdraw-rebid in round 99? (page 10?)

- Any comments about particular moves by the bidders?
- Why did WirelessCo bid-withdraw-rebid in round 99? (page 10?)
- Any other moves you want to discuss?

