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A major challenge to deploying robots widely is navigation in human-populated environments, commonly
referred to as social robot navigation. While the field of social navigation has advanced tremendously in recent
years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just
robotic agents moving in static environments but also dynamic human agents and their perceptions of the
appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated
progress in fields like computer vision, natural language processing and traditional robot navigation by
enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating
promising new directions. We believe the same approach can benefit social navigation. In this article, we
pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social
robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects
the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity,
and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks,
datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework
to make it easier to compare results from different simulators, robots, and datasets.

CCS Concepts: • Computer systems organization → Robotics; • Human-centered computing →
HCI design and evaluation methods; • Computing methodologies→ Reinforcement learning; Simulation
evaluation;

Additional Key Words and Phrases: social robotics, robot navigation, datasets, benchmarks, simulators
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1 Introduction
The study of social robot navigation has a long history, but a crisp definition of what makes
navigation “social” remains elusive. Researchers on social robot navigation often have a personal
sense of what it is and use that intuition to guide their research into how to make robots move better
around people, but the field does not yet have a consensus on a definition of social navigation or
how to achieve it. Indeed, at the Social Navigation Symposium,1 a diverse spectrum of researchers
presented a variety of views on what robotic social navigation is and their approaches to solving it,
including a range of definitions, variants, problems, and sub-problems.

Ideas presented at the Symposium included a variety of methods to evaluate social navigation
performance, involving different experimental setups, evaluation metrics, robot simulators, social
datasets, and deployment environments. As the researchers continued their discussions following
the symposium, a taxonomy of aspects of social navigation began to emerge, which helped clarify
the social robot navigation problem and converged to a set of general recommendations on how to
evaluate solutions in ways that were more comparable.

This article summarizes our work to define the social robot navigation problem, identify a
taxonomy of its important aspects, create guidelines for its evaluation, and define a common
API to make evaluations more comparable. After a review of related work in Section 2, Section 3
proposes a definition of social navigation and a strategy for achieving it by following social
navigation principles. Section 4 reviews the different scientific questions asked by social navigation
researchers, and Section 5 outlines our taxonomy for analyzing social navigation benchmarks,
datasets and simulators. Section 6 discusses the metrics that have been developed for measuring
social navigation, including subjective human evaluation metrics, computable analytic metrics, and
research toward learned metrics. Section 7 discusses the typical scenarios used in social navigation,
and Section 8 describes benchmarks built on these scenarios, while Section 9 reviews datasets
collected on social navigation. Section 10 reviews simulators and presents our work to create a
unified interface across them.

Figures 1 and 2 illustrate the principles and guidelines we present for the development and
evaluation of social navigation. Principles are high-level goals that social navigation methods should
try to achieve, as illustrated in Figure 2. Guidelines are concrete, actionable recommendations that
practitioners of social navigation research may consider when creating and testing their solutions,
as summarized in Figure 1 and unpacked in the rest of the document.

2 Related Work
The field of social robot navigation is vast and we will not attempt to summarize it; instead, we refer
to many recent surveys on social navigation [23, 28, 31, 50, 79, 97, 103, 105, 133, 167]. Among these,

1https://sites.google.com/view/socialnavigationsymposium/home
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Fig. 1. We identify eight broad principles of social robot navigation—including safety, comfort, legibility,
politeness, social competency, agent understanding, proactivity, and contextual appropriateness—which
motivate specific guidelines for experiments, metrics, scenarios, benchmarks, datasets, and simulators.
Principles and guidelines are labeled with two-letter codes, with P for principles, R for real-world issues, M
for metrics, N for scenarios, B for benchmarks, D for datasets, and S for simulators.

Fig. 2. We define a socially navigating robot as one that interacts with humans and other robots in a way
that achieves its navigation goals while enabling other agents to achieve theirs. To make this objective
achievable, we propose eight principles for social robot navigation: safety, comfort, legibility, politeness, social
competency, agent understanding, proactivity, and contextual appropriateness.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.
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[50] focuses on evaluating social robot navigation algorithms, reviewing 177 recent papers to gather
evaluation methods, scenarios, datasets, and metrics, using their findings to discuss shortcomings
of existing research and to make recommendations for future research directions. Another recent
survey by Mavrogiannis et al. [97] focuses on the core challenges of social navigation with respect
to navigation algorithms, human behavior models, and evaluation. Our work builds on the works
of [50] and [97] and similar surveys to map the field. We contribute a crisp definition of social robot
navigation based on discussions held at the 2022 Social Navigation Symposium, an overview of
methodologies for research, and a taxonomy of the field which we use to examine existing metrics,
scenarios, benchmarks, datasets, and simulators, and shared principles to make social navigation
evaluations comparable across the community.

Wang et al. [167] propose new metrics evaluating the principles defined in [79], comfort, natural-
ness, and sociability. We expand the principles in [79] and propose a lifecycle of social navigation
with recommendations for metrics, scenarios, benchmarks, datasets, and simulators, along with
guidelines for metric usage.

Beyond social navigation, clear, repeatable, and accessible benchmarks have accelerated progress
in fields like computer vision [139] and natural language processing [15, 130, 166] enabling
researchers to compare algorithms, revealing limitations of existing solutions, and illuminat-
ing promising new directions. Our effort builds on benchmark challenges in traditional robot
navigation [2, 35, 36, 141, 169, 170], social navigation benchmarks and challenges [11, 12, 39, 45,
72, 83, 109, 122, 145], and social navigation scenario development [34, 126, 171]. We review social
navigation scenarios and benchmarks in Sections 7 and 8. We contribute guidelines for scenario
development, a review of scenarios in the literature, a social navigation scenario card, as well as
guidelines for social navigation benchmarking and dataset development.

Simulators are a key component in social navigation, though many simulators exist with diverse
APIs which are largely not compatible. [72], discussed in more detail in Section 8 is a benchmark
that provides an API for easily generating new worlds and tasks for two different simulators. This
article proposes guidelines for simulator development and usage, as well as a common API design
to unify simulator outputs to facilitate common evaluations using shared metrics.

3 Toward a Definition of Social Navigation
Social navigation refers to a range of behaviors from simple navigation around dynamic obstacles,
to complying with complex social norms, up to navigating with communicative intent. As such,
it risks becoming a “suitcase word,” defined by Minsky [101] as words that carry other concepts
inside them, like memory, emotions, or consciousness; these terms must be unpacked to understand
their meanings fully.

In this section, we unpack the term “social robot navigation.” First, we examine social robotics
and what it means. Then we examine the sub-problems of social navigation and how context can
affect what behaviors are considered social. To guide research, we formulate these problems as
social navigation principles.

3.1 What Is a Social Robot?
Intuitively, we expect social robots to be able to recognize social cues, norms, and expectations,
to have the understanding to interpret them correctly, and to have the capabilities to respond
appropriately. This raises the question of what “social” is, and what kinds of sensing, interpretation,
and capabilities social robots need to effectively navigate social interactions.

In their review of Human–Robot Interaction (HRI) for social robotics, Kanda and Ishiguro
[68] argue that in addition to navigation (moving robots from place to place) and manipulation
(changing objects in the environment) capable robots must also leverage social interactions, i.e., be
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able to interplay with humans or other robots to perform tasks. Further, they distinguish robots
that simply encounter humans from those that have socially interactive features, such as voices,
expressive faces, or the ability to gesture.

But simply having socially interactive features in a robot does not mean that the quality of
its interactions would be acceptable to humans or efficient for others; additional principles are
needed to apply these features in a positive way. Developing solutions that create high-quality
social interactions autonomously is difficult; many social interactions that Kanda and Ishiguro
studied were beyond the technology of the time and required a human to teleoperate the robot.
What distinguishes “social” robotics from pure interactivity?

To define “social” more precisely, we examined the terms social and antisocial for humans.
Social sometimes means participating in society, i.e., participating in an interacting group whose
individuals modify their behavior to accommodate the needs of others while achieving their own.
But social has a second meaning: a social individual has outstanding skills to work with others,
based on an understanding of their feelings and needs and adapting to them. Antisocial individuals,
in contrast, fail to follow the customs of society or live without consideration for others. Inspired
by these terms when applied to humans, we generalize this notion to other agents, and offer this
definition of social robot navigation:

A socially navigating robot acts and interacts with humans or other robots, achieving its
navigation goals while modifying its behavior so the experience of agents around the robot is
not degraded or is even enhanced.

This social quality may be reflected through overt behavior changes, such as respecting social
norms, or through understanding other agents’ needs, feelings, and capabilities.

3.2 Principles of Social Navigation
It is often difficult for an agent to know exactly what other agents, especially humans, need to
achieve, or what they feel and like, and social norms that could guide us are often not verbalized.
To operationalize these concerns, we identified principles of social navigation that can be used to
evaluate the quality of social behavior, including (1) safety, (2) comfort, (3) legibility, (4) politeness,
(5) social competency, (6) understanding other agents, (7) proactivity, and (8) responding appropriately
to context, as illustrated in Figure 2.

Seen from the lens of optimization, the first seven principles of social navigation can be formalized
as additional objectives that the robot needs to optimize for while still achieving its main objective,
and the eighth principle, context, can be seen as weighting which principles are most important
at any given time, as shown in Figure 3. These principles are not completely orthogonal: improving
legibility might improve safety and even comfort, whereas non-verbal politeness depends on under-
standing other agents’ trajectories. In addition, what is considered appropriate or polite behavior
depends on both the cultural context [132] and the robot’s main objective: for example, a delivery
robot arguably should maintain a greater distance from humans than one functioning as a guide.

The principles mentioned above guide the development of metrics to evaluate social robots,
discussed in more depth in Section 6. Properly studying these principles of social navigation directly
impacts which metrics to measure [50], what datasets to collect, how to build simulators, and how
to structure benchmarks. In the following sections, we unpack these principles as often used in
social robotics research:

Principle P1: Safety—Protect Humans, Other Robots, andTheir Environments.Aminimal requirement
for robots and human sociality is not harming others in the course of business [14, 80], as the
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Fig. 3. Contextual factors of social navigation. While the first seven principles represent factors to optimize,
the eighth principle, contextual appropriateness, calls out that the weighting of these factors can be affected
by many features, including cultural, diversity, environmental, task, and interpersonal context. Lines in the
diagram are representative of common interactions but are not exclusive.

robot fails to do in the first scenario in Figure 2 when it collides with a human’s toe. Avoiding
collisions with humans is important but is not the only safety concern [9, 97, 110]; robots can
damage each other or their environments. While it might be acceptable for a factory robot to bump
a guardrail defining the edge of its workspace, social robots should generally avoid damaging
human environments, which often contain important objects that can be damaged or wall coverings
whose visual appearance is important. Robots should also avoid damaging each other or behaving
in a way that induces humans or other robots to injure themselves.

Principle P2: Comfort—Do Not Create Annoyance or Stress. Humans should also feel comfortable
around robots, defined in [79] as the absence of annoyance and stress for humans in interaction with
robots. Many features contribute to comfort, including maintaining human–robot distance, not
cutting humans off, and naturalness of motion. Unacceptable robot speed, navigation jitter, and
unexpected head movements are factors that degrade humans’ perception of comfort. Additionally,
social robots should arguably not behave in a way that triggers the safety layers of other robots.
Kruse et al. [79] further argue that annoyance can be triggered by a failure to respect proxemics,
the virtual personal space around a human that other humans instinctively respect [57]. Figure 2
illustrates proxemics with the “intimate” distance of 0.45< shown in red and the “personal” distance
of 1.2<; after initially violating a human’s personal distance, the robot is shown attempting to
stay in “personal” or more distant “social” spaces, except as required by the geometric context.
Proxemics is a rich and controversial field; for an in-depth survey see [133].

Principle P3: Legibility—Behave so Goals Can Be Understood. Legibility refers to the property of an
agent’s behavior that makes it possible for other agents to infer their goals [37]. This includes not
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only the robot’s goal but also incidental interactions when performing other tasks, e.g., moving to
the right or left when passing in a hallway. Dragan et al. [37] define legibility as relaxing constraints
such as predictability of trajectories (in the sense of an agent’s own predictable style) in favor of
more clearly understood behaviors (in the sense of moving to make goals explicit). While [37]
focused on changes to robot paths to make them legible, a robot capable of communicating could
explicitly announce its intentions, the way restaurant staff are trained to call “corner” when entering
a blind corner, as the robot does in the middle of Figure 2.

Principle P4: Politeness—Be Respectful and Considerate. Politeness refers to behavior that is respect-
ful and considerate of people. There are at least two dimensions: physical politeness (how robots
navigate around people, such as not cutting people off) and communicative politeness (gestures or
verbal signals, such as saying “excuse me,” or “on your left,” as the robot does in Figure 2 when a
narrow hallway forces it to transgress on a human’s personal space). Politeness can have a strong
effect on people’s perception of robots [66, 131]. Social robots should also be considerate of each
other, so they do not prevent other robots from accomplishing their tasks.

Principle P5: Social Competency—Comply with Social Norms. Robots should comply with social,
political, and legal norms for sharing space. Many social competencies are matters of following
conventions rather than optimizing performance [26, 29, 131]. For example, in the absence of norms
there is no optimization preference for driving on the left or right, but identifying and following the
local norms helps prevent conflicts [103] in the third hallway interaction in Figure 2. Some social
competencies, like turn-taking, can emerge naturally [77], whereas others must be specifically
engineered. Social norms may apply to more than just humans; conventions of behaviors may
make it easier for robots to interact.

Principle P6: Understanding Other Agents—Predict and Accommodate the Behavior of Other Agents.
Understanding, accommodating, and even facilitating other agents’ activities is a key element of
social behavior. Accommodating other agent’s goals and comfort requires an understanding of
what they are perceiving, doing, and trying to accomplish. For example, to pass between two agents
politely, it is important to understand whether they are conversing [125]. Understanding when the
interaction potential—the likelihood of robots entering human personal space—should be minimized
[8, 156] or maximized [99] depends on the task [102]. Further, understanding how agents move
can reduce the potential for conflicts (short-term encounters in which humans and robots would
collide without intervention [20, 103]), as in the right side of Figure 2, where a robot recognizes the
human’s path will cross theirs and stops to prevent a conflict.

Principle P7: Proactivity—Taking the Initiative to Prevent and Resolve Issues. Simply understanding
other agents is not enough, however: in some circumstances, being social involves taking the
initiative or even interrupting other agents in their navigational task [93]. For instance, at a four-
way intersection, delays occur if all drivers act conservatively, necessitating one to take the lead or
propose a solution, such as signaling others to proceed [21, 151]. Research on self-driving vehicles
shows that non-conservative (or “aggressive”) behavior can be effective or even desirable when
expected by others [19, 22]. Although robots are less likely to be mistaken for humans as in the
self-driving domain, similar deadlock scenarios, like two pedestrians dodging in the same direction,
can arise. In such cases, a robot that takes the initiative to avoid a human or to proactively suggest
a solution is arguably more socially adept, as shown on the right side of Figure 2, where the robot
proactively proposes that the human enter the elevator first to prevent this kind of deadlock.
Section 7 discusses measuring proactivity through scenarios designed to elicit this behavior.
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Principle P8: Contextual Appropriateness—Behave Properly in the Current Context. Social navigation
should be evaluated within the context that it is to be deployed. Context helps us understand the
relative importance of the previous objectives and is a complex construct in its own right, as shown
in Figure 3. An example shared in the symposium was a Crash Cart robot in a hospital bringing an
emergency drug to a doctor: politeness is less important than task success. Also, when navigating a
narrow corridor, we may be “less polite” and get closer to other agents. We identified the following
forms of context, all of which can change which response is right in a given situation:

—Cultural Context : Different cultures have different social norms, as notably documented in
[57]; more recently [7, 9] and [132] examined cultural norms in social robotics but concluded
more work needs to be done.

—Diversity Context : Different individuals with different abilities or different background histories
may need different accommodations [132].

—Environmental Context : The environment may affect the social navigation problem [112] and
includes both geometric factors—the shape of the space—and operational factors—how that
shape is to be used.
–Geometric Context : The geometry of the environment may affect the social navigation
problem. For example, the more crowded the space is, the smaller the acceptable distance is
between the robot and other agents.

–Operational Context : The operational domain the robot is intended to work in affects what
behaviors are considered good: for example, a robot may drive slower in a daycare than in
an office, even if the two settings had identical geometric layouts.

—Task Context : In turn, the task the robot operates in affects what behaviors are appropriate:
for example, even in a single environment like a hospital, whether a robot is performing mail
delivery or is a crash cart changes its weighting of politeness against speed.

— Interpersonal Context : While there are many different areas of context that are appropriate,
interpersonal context (e.g., whether humans are independent pedestrians, are traveling in a
group, or stopped and conversing is critical to knowing how to navigate among them).

As an illustration of context, the robot in Figure 2 is first shown violating a person’s intimate
space distance in red, then attempting to avoid proxemics violations going forward. However,
the corridor around the bend is too narrow to prevent the robot from passing through a person’s
personal space distance in yellow, prompting the robot to politely call out its presence. Then, in
the relatively small elevator, the standard interpersonal distances are no longer easy to achieve,
and both the robot and human adjust their perceived proxemics radii based on the current context,
shown as a contraction of the proxemics circles from their original size.

Social navigation should be evaluated within the context that it is intended to be deployed.
While defining the context in a sufficiently precise way for a robot to identify or respond to it is a
challenging problem, at the least, the intended context should be defined well enough in terms of
cultural, diversity, environmental, operational, task, and interpersonal context for other researchers
to gauge the applicability of the ideas and findings conveyed by research.

4 Research Methodologies of Social Navigation
Benchmarks requiremeasures and an evaluationmethodology for comparing social robot navigation
systems. They consider different phenomena including human perceptions of robot behavior as
well as objective properties, such as behavior around dynamic obstacles, which can affect social
principles like safety and comfort. The scientific questions that benchmarks ask determine the
phenomena they study and the data they collect, which in turn guide the development of social
navigation methods, creating a lifecycle of social navigation research.
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4.1 Research Questions of Social Navigation
Theoverarching research question of social robot navigation is developing a scientific understanding
of the problem sufficient to build computational models that enable robots to perform acceptably
in human environments. This involves understanding the factors that influence social navigation,
developing models of those factors, and implementing algorithms that take them into account. To
fairly evaluate how algorithms compare to each other, we need standardized benchmarks that help
us understand their differences and identify which ones are better as opposed to evaluations crafted
for each algorithm. Given the complexity of social navigation, different benchmarks often focus on
different aspects of the problem and thus different, more specific scientific questions. Some of these
questions arise from traditional robot navigation research and can arguably be evaluated using
traditional methods, with adjustments for human participants:

—How do methods compare with each other against baselines? Some aspects of method evaluation
involve quantitative metrics measurable in simulation, such as revealing problems in a robot’s
safety layer as it faces increasing obstacle densities. However, when human evaluations are
required, these are typically conducted in the real world, though toolkits are now coming into
use that enable labeling simulated trajectories as well [6].

—How do components of a method affect its overall performance? These are generally conducted
by turning method components off, often called “ablation studies” in analogy to ablation
studies in neuroscience [100]. While in theory ablation studies could be conducted on-robot,
in practice these studies are often only conducted in simulation, as real human participant
time can be wasted on variants of the algorithm expected to perform poorly (or known to
perform poorly in simulation).

—How do behaviors generalize to different environments? Benchmarks can test methods under
different conditions to evaluate this, a task that is easier (though less realistic) in simulation.

Success at task performance is often measurable and quantitative, but determining whether
a robot is satisfying the principles of social navigation is trickier. While the physical aspects of
Principle P1, Safety, may arguably be measurable quantitatively (at least in the sense that the lack
of safety can be measured through damage and collisions), others like Principle P4, Politeness, often
require human evaluation, and still, others like Principle P2, Comfort, are often explicitly defined in
terms of human reactions. Scientific questions involving these subjective aspects therefore generally
require measuring human perceptions and reactions to robot behaviors and are best investigated
through HRI studies:

—Human Ratings: How do humans rate the socialness of social navigation methods, either
intrinsically or in comparison to a baseline? For some researchers, human ratings of policy
behavior in real contexts are the gold standard for policy performance, but for these ratings to
be effective, studies must follow proper HRI protocols and use validated survey instruments
[64, 121].

—Behavior Analysis: How does human behavior change when exposed to different robot navi-
gation policies? While ratings are explicit, behavior change is implicit or even unconscious.
Studies should be conducted according to HRI guidelines to ensure conditions are appropriately
blinded so participant and rater reactions are valid.

— Issue Discovery: Benchmarks can also be used to conduct exploratory analyses. For example,
these analyses could find out the frequency of encounter types between humans and robots
as well as the frequency of problems that affect a given policy. This can guide research in the
direction of problems that occur in the wild. These studies must be conducted with a robot in
a live deployment.
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Many benchmarks focus on a subset of these questions because different researchers have
different aims and different groups have different needs. As a result, social navigation evaluation
methodologies have become fragmented and a comprehensive evaluation methodology does not
yet exist.

Because different lines of research have different needs, we do not aim to provide one evaluation
protocol for all social navigation methods, but a methodology by which researchers can make
principled decisions to guide their own evaluations. Such a protocol will allow researchers to
compare social navigation methods along the dimension relevant to a specific subdomain.

In Section 8 we argue that because social navigation involves understanding both how robots
affect other agents and which methods are effective, most benchmarks will benefit from incorpo-
rating both HRI components that evaluate human reactions in the real world as well as ablation
studies, even if those are constrained to simulation.

4.2 Types of Social Navigation Studies
We advocate viewing in-the-wild studies and controlled scenarios as part of a lifecycle of study of
social navigation phenomena. To define terms, we can distinguish several different major classes of
social navigation studies:

(1) Field Studies: Field studies involve pedestrians who are not confederates of the experimenters,
such as a mall, campus, or boardwalk. Such studies are often called “in the wild” as they
are conducted in uncontrolled environments. Field studies provide an opportunity to collect
natural data about robot-human interactions outside the influence of experiments or instruc-
tions, but individual encounters are not directly reproducible. Very-large-scale studies offer
a proxy of reproducibility when rare events re-occur with enough statistical frequency to be
analyzed; however, large-scale field studies are the most resource-intensive, complex, and
potentially dangerous to conduct.

(2) Robot Deployments: Robot deployments are conducted in environments partially under the
control of the experimenters, such as an office, a classroom building, or a factory. In this
case, robot deployments necessarily involve experimenters informing participants about the
robots, which may change their responses compared to someone encountering a robot in the
wild; furthermore, participants necessarily develop experiences about the robots that can
distort HRIs. Symposium participants reported that users unfamiliar with robots were less
accepting of errors than robot researchers, who in turn were less accepting than experienced
“robot wranglers” responsible for managing the deployment; these anecdotal reports mirror
studies that found evidence that both general computer user skill level [69] and familiarity
with particular robots [75, 115, 140] could improve assessments of robot capabilities and
behavior. Semi-controlled robot deployments are similar to, but less naturalistic than field
studies, but because robot deployment environments are more controlled than true in-the-
wild studies, a larger scale is often more practicable by conducting experiments over a longer
period of time. For example, [13] collected 1,000 kilometers of indoor navigation on a college
campus, and the system described in [171] was part of a deployment at Google that collected
over 3,000 kilometers of data.

(3) Laboratory Experiments: Laboratory experiments are sometimes considered the gold standard
in science but may have distorting effects on human behavior due to the controlled environ-
ment and experiment instructions. While A/B testing in field studies or robot deployments
can compare some algorithms, laboratory experiments are often necessary to answer scien-
tific questions about human reactions to changes in robot behavior or to evaluate algorithmic
changes prior to large-scale deployments. However, we also need to ensure that laboratory
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Fig. 4. Lifecycle of social navigation research. Field studies, robot deployments, and staged social interactions
can be used to collect data, which helps identify issues and their prevalence. Issues discovered guide laboratory
experiments and the development of social navigation scenarios, which in turn can inform data collection.
Issue discovery also helps guide the development of benchmarks that test these issues, along with public
benchmark challenges; attempts at solutions of these challenges can also help identify issues.

experiments have good ecological validity, defined as the degree to which laboratory results
generalize to the real world [74, 114, 142]. For social navigation experiments, the ecological
validity of an experiment in turn depends on whether the scenario it tests has been prop-
erly validated. We discuss a methodology for scenario design in Section 7.1, but validating
scientific instruments to determine whether they correctly evaluate the variables they are
designed to test, often called construct validity, can take several iterations of experiment and
analysis [88, 106].

(4) Social Navigation Scenarios: Social navigation scenarios, such as Frontal Approach, Pedes-
trian Overtaking, and Intersection, can be viewed as a subset of laboratory experiments
that test specific scenarios discovered through field studies or robot deployments, with
well-defined configurations validated through theoretical analysis, pilot studies, or social
navigation issue discovery in existing datasets. The social navigation community is collecting
a growing set of scenarios to guide experiments, enable data collection for imitation learning,
and serve as regression tests for behavior.

(5) Staged Social Interactions: Due to the excessive costs of field studies and the lack of rare,
naturally occurring human–robot encounters in robot deployments and laboratory experi-
ments, researchers developed staged social interactions to evaluate robot social navigation.
In staged social interactions, participants are recruited to act in a structured but free-form
fashion; this can be an explicit set of scripts (so-called “Guided Crowd Scenarios”) or a less
structured activity such as a “Robot Happy Hour” where participants are recruited to perform
a social activity around where robots are operating. These studies are less controllable than
social navigation scenarios, and their “staged” nature makes them closer to robot deploy-
ments or laboratory experiments rather than true field studies. However, they can create
higher-density free-form interactions than may otherwise be available.

4.3 Lifecycle of Social Navigation Research
Arguably, social navigation research should be driven by data collected from field studies or robot
deployments, but these can be prohibitively expensive; conversely, validated social navigation
scenarios enable analysis of known problems, but may not cover novel experimental conditions or
detect problems that show up in the wild. Rather than focus on one or the other, it is more useful
to think of the following lifecycle of social navigation benchmarking:

(1) Data Collection: Field studies, robot deployments, and staged interactions can be used for the
first step of the scientific process: data collection. Ideally, these should be used for more than
just A/B testing; they should be used to generate datasets that can be shared to extend the
power of the social navigation research community to collect data at scale. Data that can be

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.



Principles and Guidelines for Evaluating Social Robot Navigation Algorithms 34:13

collected includes but is not limited to robot and human behavior, surveys (e.g., subject’s
opinions on safety or comfort), or biometric data (e.g., heart rate, skin impedance).

(2) Issue Discovery: The foundation of social robot navigation is humans interacting with robots.
Issue discovery refers to mining human–robot encounter datasets for repeating problematic
scenarios that can be reliably detected, enabling the statistical analysis of their frequency
and properties. Ideally, the focus should be on high-frequency issues (challenging scenarios
that often occur, like a frontal approach in a narrow hallway or the freezing robot problem)
and high-risk issues (challenging scenarios where there is a high risk, like compromising a
person’s safety). Robot deployments in desired target environments are often the best way
to collect these data, but large-scale field studies can serve as a proxy.

(3) Laboratory Experiments: Many scientific questions about HRI can be conducted even if
large-scale datasets or issue statistics do not exist. Research groups not able to conduct large-
scale studies or deployments can nevertheless formulate scientific questions and answer
them. Where feasible, these experiments should use benchmarking procedures and metrics
validated by the research community, such as those discussed in Section 6. Ideally, these
should use scenarios identified as frequent issues in the target domain.

(4) Scenario Development : One outcome of data collection, issue discovery, and laboratory exper-
iments should be the identification of social navigation scenarios that can be reliably detected
in datasets, occur frequently in target environments, and can be replicated in controlled
laboratory settings. While social navigation scenarios are not a substitute for in-the-wild
data collection, using validated social navigation scenarios in laboratory experiments can
ensure that experiments are ecologically valid and can ensure that A/B tests are backed up by
regression tests of known social navigation issues. Scenarios also aid targeted data collection
for both analysis of human behavior and generation of datasets for imitation learning.

(5) Social Benchmarking: Social navigation scenarios can be composed to create benchmarks for
social navigation. Most social navigation benchmarks consist, at least implicitly, of a set of so-
cial navigation scenarios, real or simulated, that are used to test robot social navigation behav-
ior, along with metrics to gauge performance; many also define datasets of social navigation
behavior for comparisons and may also provide simulation environments where the scenar-
ios are defined. From a lifecycle perspective, using reliable, validated scenarios frequently
occurring in target environments would make a social navigation benchmark more valuable.

(6) Benchmark Challenges: Finally, benchmarks can be publicly released as “challenges” which
include success criteria, a call for solutions, methods for collecting and evaluating solutions,
and a leaderboard of ranked solutions. Benchmark challenges have been used for a wide
variety of embodied AI tasks and have proved useful for promoting improvements in the
field, sometimes leading to challenges being solved and retired (see discussion in [35]). The
iGibson Challenge [164] was one of the first publicly available social navigation challenges.

4.4 Guidelines for Real-World Studies
Real-world social navigation studies have aspects that do not come up in simulated experiments
or even traditional navigation experiments. Robots controlled by untested policies can damage
themselves, other robots, humans, or their environments; human participants captured by robot
sensors have privacy and consent concerns. Here we present guidelines for conducting social
navigation experiments in the real:

Guideline R1: Follow Guidelines for Human Subject Research. User studies for behavioral and social
research should follow guidelines involving respecting the privacy, safety, and well-being of human
participants, as well as informed consent. Researchers should follow the guidelines provided by
their institution, including study protocol approval for those with an institutional review board or
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Fig. 5. A taxonomy of social navigation. Most social navigation instruments share common factors like
overall context, physical environments, human user type, robot role and task, and so on. However, datasets,
benchmarks, and simulators have additional factors particular to them.

independent ethics committees in universities and research institutions, or formal internal ethics
review processes in industrial settings.

Guideline R2: Preserve Safety. Real-world benchmarks should preserve the safety of humans,
robots, and the environment through active measures such as experiment monitors and safety
layers. In particular, policies that have been ablated to illuminate sources of power may have
unintuitive behavior; if a safety layer is not available to prevent unsafe actions, either these policies
should be tested in simulation or an experiment monitor should be ready to stop the robot in case
of issues.

Guideline R3: Report for Reproducibility. As the context of a social navigation experiment can
strongly affect its outcome, it is important to report the experiment set up, data collected and
metrics analysis clearly and comprehensively enough for other researchers to reproduce the study.

Guideline R4: Collect Data with Clear Scientific Objectives. Real-world experiments are expensive
and expose humans, robots, and their environments to risk and should be justified with a clear
notion of what is to be learned from conducting the experiment. Furthermore, the default data
collected by navigating robots may lack information needed to answer scientific questions about
their sociability. Therefore, the purpose of real-world benchmark studies should be clearly defined
to ensure enough data are collected to make the experiment scientifically useful.

Clarifying the scientific objectives of a research program can help guide researchers wanting to
set up a social navigation study. If the social navigation phenomenon is not yet well understood, a
field study might be the most appropriate. Developing datasets for social navigation can be done
with robot deployments, which are also useful for experimenting with social robot navigation
methods prior to full laboratory studies. When testing algorithms prior to deployment or comparing
algorithms to each other, clearly enumerating the important social navigation scenarios and crafting
benchmarks or staging social interactions where these scenarios occur frequently can help ensure
the comparisons have statistical power.
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5 A Taxonomy of Social Navigation
Creating principles and guidelines that are broadly useful to the social navigation community
requires understanding the research efforts already underway. Therefore, we have developed a
taxonomy for social navigation research (Figure 5) in terms of the metrics, datasets, simulators,
and benchmarks used, analyzed with a common vocabulary for factors of analysis.

5.1 A Taxonomy for Analysis
We propose that social navigation research instruments can be analyzed along a set of formal axes
which include the metrics they collect, the datasets that they use, if any, the simulator platforms
they use, if any, and any formalized scenarios or benchmarks they use for comparison.

—Metrics: Recent surveys of social navigation metrics have uncovered close to a hundred
different metrics in use (see [50, 103] for recent reviews). Some metrics are algorithmically
computed, while others are gathered by surveying humans, either explicitly via questionnaires
or implicitly through sensors measuring affect. Algorithmic metrics in turn can be hand-
crafted or learned from data gathered from surveys. Other axes of metrics include the type of
variable(s) being modeled, and whether metrics cover the behavior of the robot at a specific
point in time (step-wise) or during a whole navigation task (episode-wise). The nuances of
metrics are discussed in depth Section 6.

—Scenarios: Social navigation studies include field studies of behavior in the wild, long-term
robot deployments at particular sites, controlled laboratory experiments, social navigation
scenarios that aim to create a particular in-the-wild behavior, and “staged” scenarios that
attempt to recreate the chaos of crowd scenarios. We have developed a “scenario card” which
enables us to compare scenarios, discussed in further depth in Section 7.

—Benchmarks: Social navigation benchmarks involve an evaluation protocol for collecting met-
rics for social robot navigation methods in social navigation scenarios. Current benchmarks
are discussed in further depth in Section 8. “Challenges” are benchmarks that are publicly
available, include success criteria, and provide evaluation mechanisms along with leader-
boards to compare solutions; challenges have shown success in other fields in promoting the
improvement of the state of the art [35].

—Datasets: We have used these factors to analyze social navigation datasets, discussed in further
depth in Section 9. Note that datasets require additional parameters for analysis such as
coverage, sampling distribution, annotations, and privacy and fairness handling.

—Simulators: Social navigation simulators enable the evaluation of policies controlling agents
around other agents in simulation, discussed in further depth in Section 10. Note most
simulators have different APIs and metrics.

We next unpack factors common to metrics, scenarios, benchmarks, datasets, and simulators
before drilling into these topics in more detail in Sections 6, 7, 8, 9, and 10.

5.2 Factors Common to Social Navigation
Benchmarks, datasets, and simulators for social navigation all face similar challenges: characterizing
contexts, representing environments, defining robot roles, tasks, and embodiments, and so on.
Rather than analyzing benchmarks, datasets, and simulators separately, we argue that many factors
are shared among all three, and here present common factors in attempt to create a common
vocabulary for analysis.

(1) Context: Broadly speaking, the context of a social navigation endeavor could refers to its
scope, objective, and intended application. As discussed in Section 3.2, context is a complex
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construct, and symposium participants did not come to an agreement on a crisp definition,
often preferring to use more specific terms when available. However, when it is used, the
context of a social navigation research tool often refers to factors implicit in its definition,
e.g., a “pedestrian outdoor dataset” or a “benchmark for indoor environments.” Often, the
generic concept of “context” can be unpacked into more specific statements about the
expected environment, human behavior, or robot tasks; simulators may have these aspects
of their context embedded into their design. Aspects of context include the scope of a
dataset, what a benchmark tests and what it doesn’t, and what the focus of experiments
are: perception, trajectory forecasting, collision avoidance, algorithm benchmarking, human
simulation testing, gesture and gaze interaction, body language and affect sensing, human–
robot collaboration, indoors vs. outdoors, and individuals vs. crowds.
—Synonyms: Application, Scope
—Related Factors: Robot Role

(2) Physical Environment : Although it could be considered part of the “Context,” the physical
space in which the robot(s) and humans operate is particularly relevant. The description of
the physical environment includes high-level descriptions such as indoor or outdoor and can
be as detailed as one desires. For example, “nearby a water cooler in an office space crowded
with cubicles.” Simulator environment definitions may be scanned from the real or authored.
Environment definitions also include constraints such as the layouts and traversability of
areas of the scene, as robot objectives and constraints are conditioned on the scene layout.
The representation of this may be an explicit scene or map or may be implicit in the physical
layout of the experiment.
—Synonyms: Location, Scene Type, Context
—Related Factors: Environmental Constraints

(3) Type of Human User : Specifying who the intended or expected human users are is also
important. The key is gauging whether the humans are familiar with robots. Humans behave
quite differently when they see the robot the first few times, then they get used to it. This
type of behavior shift should be noted in a benchmark or dataset since benchmark results
obtained by interacting with a group of roboticists may not be representative of when the
robot interacts with the public.
—Synonyms: Human Role
—Related Factors: Human Behavior, Robot Role

(4) Human Behavior : A description of the actions taken by specific humans or groups of humans
as they relate to the robot. In benchmarks, the desired agent behavior needs to be specified.
In simulation, this means the algorithms and scripts that guide the movements of simulated
pedestrians. In the real world, this means the instructions to human participants; these could
range from a scripted setting, where humans are instructed to perform a specific task or
attempt to navigate to a specific location, to unscripted scenarios, where the humans are not
explicitly instructed on how to move. Examples of behavior descriptions include humans
navigating to specific waypoints, humans blocking the robot or passing. These range from
in-the-wild behaviors to carefully specified tasks and everything in between. Simulated
human behavior is currently far more constrained than behaviors in the wild.
—Synonyms: Pedestrian Behaviors, Human Tasks
—Related Factors: Robot Task, Robot Role

(5) Robot Task: The piece of work assigned to the robot. The typical robot task is navigation from
the robot’s current location to a goal location. Further, higher-level tasks could be specified,
such as the delivery of an object, or guarding of an area in the physical environment.
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—Synonyms: Robot Behaviors
—Related Factors: Robot Role, Human Behavior

(6) Robot Role: The relationship intended between the robot and the humans, e.g., servant,
companion, or fellow pedestrian in a space.
—Related Factors: Robot Task, Type of Human User

(7) Scenarios: A specific configuration of physical environment, human behavior, and robot
task. Scenarios combine three other factors into a package to enable specific configurations
of environment, behavior, and task of research interest to be shared in the community. A
scenario can be as detailed as a scripted interaction, although free-form scenarios, which are
unscripted, are also possible. A robot’s role may be specified as part of a scenario, or it may
be a variable that is changed and tested.
—Scenario Classifiers and Behavior Graphs are methods to automatically extract scenarios
from data and/or to provide an unambiguous way of labeling

(8) Coverage: The breadth and frequencies of scenarios are also important. Datasets, benchmarks,
and simulators can focus on narrowly specified scenarios, a suite of scenarios, or a broad
range of cases. Even if the coverage is broad, the distribution of the tests is important,
as is explicit coverage of corner cases, such as tests or data collection that include erratic,
non-cooperative humans.
—Synonyms: Edge Cases, Regression Tests

(9) Robot Hardware Platform: The specific robot morphology, including its shape, sensors, effec-
tors, displays, and communications modalities. Robot hardware platforms can be instantiated
in the real world, in simulation, or both; while many robots have associated simulators, not
every robot is represented in every simulator. Unifying robot embodiments is unnecessary
and likely impossible, as different robot embodiments are used in different contexts. For
this reason, while some benchmarks specify robot embodiments, others are embodiment
agnostic.
—Synonyms: Form Factor, Platform, Embodiment

(10) Sensors: The devices that detect or measure physical properties and record, indicate, or
otherwise respond to them. Sensing can include on-board sensors only or may include
external sensors or trackers.
—Synonyms: Inputs, Observation Space
—Major Divisions: Robot Sensors on the robot and Third-Person Sensors in the environment.

(11) Robot Actuators: What is the action space of the robot? Conceivably, this may also include
third-party actuators such as automatic doors, but this usage is rare.
—Synonyms: Effectors, Action Space

(12) Communications Modalities: How can humans and robots communicate? Not at all, the robot
speaking but not hearing, the robot hearing but not speaking, or two-way? For example,
possible communication modalities include visual and audio signals, body and head motion,
or no communication at all.

(13) Data Collected : In addition to any robot sensation, actuation, and communication, bench-
marks, datasets, or simulators may collect other data such as people tracks, maps of the
spaces, and so on. This can include information about pedestrians, such as access to explicit
pedestrian states (e.g., position, velocity) or just sensor data; sensor data itself can include
third-person sensors like external cameras, or be restricted to the robot’s observation space.
Pedestrian and robot data can be ground truth (either from a simulator or from motion
capture in the real world) or noisily extracted with detection and tracking. The range of
visibility of pedestrian is also important, as is whether the visibility is restricted to that of
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robot sensors (including range, occlusions, directionality, and sensing delay) or ground truth
(again, from the simulator or non-robot sensors). This is further discussed in Section 9.

(14) Metrics Collected : Metrics transform raw collected data into standardized measures with
shared definitions that can be compared across different algorithms, robots, and scenarios.
Having shared metrics is important for communicating benchmarks, datasets, and simulators
and is being looked at by several research groups; we present a view of this field in Section 6.

(15) Human Behavior Authoring Methods: How are the human behaviors generated for the dataset
or benchmark? E.g., real pedestrians, confederates of the experimenters, recordings, simulated
via a standard social model, or generated by a policy. For simulated environments, these
behaviors may include non-reactive (pedestrians driven by pre-recorded data), reactive
(ORCA, social force, or generative models), and animated (character animations including
static moving shapes and animated walking); for real environments, these may include
natural behaviors, scripted behaviors, or randomized behaviors. For both simulated and real
environments, the goals of the movement may be random, goal-directed, and potentially
customized depending on the context.
—Synonyms: Pedestrian Simulation, Crowd Simulation, Microscopic Crowd Simulation

(16) Robot Behavior Authoring Methods: These are similar to the human behavior authoring
methods, except there is no “real robot” class corresponding to “real pedestrians,” just the
robot policies under test.
—Synonyms: Agent Behaviors, Baseline Policies

(17) Simulation vs. Real: Whether the dataset or benchmark is in simulation, in the real, or some
combination of both. Sim and/or real: Is the benchmark operated in the simulation or in
the real world? The participants noted that the simulation can be effectively used for issue
discovery but cannot replace real-world testing.
—Subfactors: Simulation Fidelity, which ranges from dots in an abstract geometrical space
to fully rendered simulations. This includes both Human Simulation Fidelity and Robot
Simulation Fidelity, as robots are simulated more often than full humans.

While the above factors are common across many social navigation instruments, one size does
not fit all: there are additional factors particular to benchmarks, datasets, or simulators:

—Dataset Properties include trajectory count, kilometers traveled, duration traveled, number
of pedestrian encounters, people count and density, robot count and density, primary view
type (robot POV, pedestrian POV, third-person POV), dataset annotations, dataset diversity,
privacy support, and sensor suite type (moving robot/stationary robot/third-person sensor
suite).

—Benchmark Properties include the simulation platform, associated dataset, provided baselines,
challenge leaderboard, downloadability, and the most recent update.

—Simulator Properties include abstraction level, scene representation, agent representation,
physics simulation fidelity, level of detail of robot simulation (points, cylinders, robot mor-
phologies), level of detail of pedestrian simulation (with or without gait), pedestrian visual
fidelity (basic meshes, movements, photorealistic), handling of multiple agents (flow-based
crowd, agent-based individuals), and environmental assets (realistic scenes or simulated
layouts; indoors, outdoors, or abstract scenes).

When providing datasets, benchmarks, and simulators, researchers should identify the key
features of the social environment and agent behavior that would enable other researchers to
properly evaluate and replicate their work. While social robot navigation is highly varied, key
features of the social environment might include the physical layout of the indoor or outdoor
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environment and the expected human and robot density within it, as well as other contextual
features such as intended task or human and robot roles. Similarly, key features of agent behavior
should include both traditional navigation metrics (such as Success Rate (SR), navigation time
and distance, and environment collisions) and social metrics (such as safety, comfort, and agent
collisions) so other researchers can understand how well robots perform at their tasks and how
their behavior impacts others.

6 Social Navigation Metrics
Unlike traditional navigation, where the community largely agrees on a few evaluationmetrics, such
as Success weighted by Path Length (SPL) [2], finding a consensus for social navigation metrics
is challenging. One reason for this difficulty is that we care about multiple aspects of human–robot
encounters in social robot navigation, e.g., how safe a robot’s behavior is near people and how well
the robot communicates its intent in order to facilitate motion coordination. Measuring any one of
these factors from a human perspective is difficult, let alone deciding how to combine them into a
single metric.

For example, while safety is a generally agreed-upon factor that drives the implementation and
evaluation of social navigation systems, safety is a complex construct [80]. While one can think of
physical safety in terms of collisions, as is often the case in the broader robot navigation literature
(and is captured in Principle P1, Safety), safety also can be viewed from a psychological standpoint
[67] (which might be captured in Principle P2, Comfort), or even in terms of not disrupting social
and moral values [14] (which might be captured in Principle P5, Social Norms). Careful thought
must be put into even obvious terms as the context of their usage may change their meaning
(Principle P7, Contextual Appropriateness).

The next section provides a taxonomy of social navigation metrics, followed by a discussion
of the challenges of measuring social navigation. We then present recommendations on metrics
for social navigation, along with guidelines for using metrics to evaluate the success of social
navigation systems.

6.1 Taxonomy of Existing Social Navigation Metrics
In the past years, a wide range of metrics have been proposed to quantitatively measure key aspects
of social robot navigation and allow for fair comparison among social navigation solutions (see
[50, 103] for recent reviews). We describe three ways social navigation metrics can be classified
according to, (a) their nature, (b) the variable being modeled, and (c) their temporal scope. To fully
classify a metric, it should therefore be classified according to the three taxonomies.

6.1.1 Taxonomy Based on Their Nature. We can distinguish two main groups of metrics, those
that are algorithmic, and those that are not computed but surveyed (see Figure 6).

Surveyed metrics are usually human ratings of desired properties of social robot navigation, e.g.,
safety, comfort, or legibility. They can be classified into questionnaire-based (in situ or ex situ), where
the ratings are explicitly requested, or sensor-based, where the ratings are transduced from sensor
data. Although surveyed metrics are (arguably) the best way to measure social navigation success,
they are expensive, difficult to scale, and time-consuming. While small-scale human studies are
commonly conducted, results can have high variance and can be non-reproducible. To address this
shortcoming, researchers have also created a variety of algorithmic metrics that serve as proxies for
surveyed metrics. These algorithmic metrics are cheap to compute and reproducible, properties that
are key for benchmarking. Unlike traditional navigation, where SPL [2] is a commonly accepted
metric, social navigation has no single metric of reference. Instead, method comparison is usually
performed using multiple metrics.
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Fig. 6. The proposed taxonomy suggests classifying metrics according to three aspects: the type of variable
(or variables) they model, their nature, and their temporal scope. To quickly identify metric types, we suggest
using a three-letter code based on these factors. For example, Success Rate (SR) is a Non-Social, Hand-Crafted,
Task-Wise metric; a sensor metric gauging moment-to-moment human facial reactions to robot behavior
would provide a Social, Sensor, Step-wise metric; and a questionnaire asking about the overall quality of a
robot’s navigation would be an All-Encompassing, Questionnaire, Task-Wise metric.

Algorithmic metrics can be subsequently classified into hand-crafted and learned, based on
whether they are the result of intuition and experience, or modeled using statistical analysis or
machine learning. Hand-crafted metrics are objective (i.e., in what they compute, not necessarily
their interpretation), scalable, and can be easily computed given certain assumptions, yet oftentimes
they cannot fully capture the desired property of social robots. Learned metrics can be considered
a compromise between survey-based and hand-crafted metrics. These evaluative models can be
trained on large-scale offline datasets of human ratings and then used to score robot behavior. They
are reproducible and have minimal inference cost, but compiling the necessary datasets can be very
time-consuming. Learned metrics can be further split into distribution-specific metrics, which rely
on assumptions on the properties of the dependent variable to model [123], and distribution-agnostic
metrics, which aim to model these variables without making any relevant assumptions [4, 94].

6.1.2 Taxonomy Based on the Variable Being Modeled. Regardless of the nature of the metrics,
algorithmic or surveyed, learned or hand-crafted, the variables they model can refer to different
phenomena. Most common metrics assess either social or non-social aspects, but a metric could
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also combine both into an all-encompassing metric (see Figure 6). Non-social metrics have generally
been developed with PointGoal navigation in mind and focus on aspects such as path and energy
efficiency or SR.They generally have the advantages of being objective, reproducible, and are usually
fast to compute, but do not provide any social performance information. Social metrics focus on
one or more social aspects of robot navigation, such as comfort, acceptance, trustworthiness, or
predictability. All-encompassing metrics aim to model the overall scores humans would provide in
robot navigation, considering both social and non-social aspects. Although these metrics would
arguably be the most desirable, very few have been proposed [4, 30].

6.1.3 Taxonomy Based on Temporal Scope. It is also useful to consider metrics’ temporal scopes,
as they determine where a metric can be applied. Here we distinguish task-wise and step-wise
metrics (see Figure 6). Step-wise metrics provide a score per timestep and are well-suited for
path planning. Task-wise metrics are the most appropriate for benchmarking social navigation
algorithms, as they provide a single score per task. Step-wise metrics can potentially be combined
into task-wise metrics, such as by averaging across all steps within a task. However, not all moments
within a social navigation task have an equal impact on social performance. To address this, task-
wise metrics can also combine step-wise data with temporal data to capture features such as
reversals in step-wise metrics over time, more heavily weight task-relevant periods of the task,
or measure how long a robot was able to navigate with high-quality step-wise metrics [154]. For
reinforcement learning-based social navigation, task-wise metrics (specifically, All-encompassing,
Algorithmic, Task-Wise, or AAT, according to the proposed taxonomy) can be preferable over
step-wise metrics, depending on their properties. Although using task-wise metrics would produce
delayed rewards, a step-wise metric would only be advisable if its cumulative value reflects task
performance, which is generally not the case.

6.2 The Challenges of Measuring Social Navigation
The evaluation of robot navigation has evolved as the field has matured, moving from success
metrics to quality metrics to social metrics. Early work focused on success metrics that gauged
whether the robot did its task, such as SR or kilometers without incident [95]. Later work proposed
quality metrics that gauged how well the robot did its task, such as SPL [2]. More recent work such
as [167] proposes social metrics that gauge how the robot behavior affects other agents, such as
Personal Space Compliance (PSC) [164] or questionnaire-based metrics [34, 126, 171].

However, because social metrics involve robots interacting in complex real-world environments
with humans whose learning changes their behavior over time, several additional factors must be
considered to evaluate these social metrics accurately and reliably. These include (1) the challenges
of dynamic environments, (2) the impact of long-term exposure on study participants, (3) how
robot behavior may be changed by deployments, and (4) the limitations of metrics themselves.

6.2.1 The Challenges of Dynamic Environments. When measuring the performance of a social
robot, an important consideration is the dynamic nature of the environment and of the other
pedestrians around. These elements are often controlled when performing in-lab studies, but
evaluation in the wild is much more intricate, especially when looking at longer periods of time,
as robots become more and more capable of long-term deployment [13]. Results of performance
measures like accuracy might be affected by simple changes such as lighting conditions and weather.
Speed may be similarly affected by the percentage of remaining battery. While almost impossible
to mitigate such effects, they should be acknowledged and highlighted when reporting relevant
results.
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6.2.2 Challenges Based on How Robots Change People. Yet, a more challenging aspect to measure
is the dynamic nature of pedestrians when interacting, even casually, with a robot [135]. When
people interact with a navigating robot for the first time, they adapt their beliefs and expectations to
the robot’s behavior, which can cause immediate improvement in various metrics such as fluency,
time, and efficiency.

This phenomenon can be leveraged to train pedestrians around robots, rather than adapting
the robot to the pedestrians. One such use of passive demonstrations was shown to significantly
reduce the number of conflicts between a person and a robot passing one another in a hallway, by
having the robot demonstrate in advance how it signals its intentions [43].

Beyond the novelty effect of first encounters, people will refine their behavior around a robot as
they interact with it over time. A person will behave and react differently to a navigating robot on
the tenth interaction than the hundredth [52, 58]. More research is needed on how people adapt to
the presence of navigating robots [81], but studies of other social interactions such as asking favors
[140] and information delivery [75] indicate that adaptation is likely.

When conducting research on social navigation in academia, it is not uncommon to rely on
students, especially those with STEM and robotics backgrounds, as participants in an empirical
study; this reliance on students has long been known to the psychological field as a potential source
of bias [144, 148]. Measuring acceptance, animacy, and fluency can all be affected by this biased
population that has been exposed to robots as part of their studies. Moreover, as robots are being
deployed around campus, other students are also being exposed to these robots and thus over longer
periods of time might also be biased in their expectations regarding the behavior of robots, based on
their past encounters. Industry researchers in the symposium also reported differences in socialness
ratings between naive subjects and robot researchers, and even between robot researchers and
experienced robot “wranglers” who logged far more hours of direct robot time.

6.2.3 Challenges Based on How People Change Robots. When a robot is deployed for a long period
of time, people may become familiar with it and thus more willing to accept risky behavior from it.
For example, it may be able to drive at higher velocities, which will affect speed measurements,
or it might get closer to others, which may affect efficiency and acceptance. Some symposium
participants noted multiple instances of robots colliding with visitors after a good track record of
avoiding collisions around the development team; a postmortem revealed that this was likely due
to the development team implicitly learning to keep a collision-free distance.

Moreover, people’s attitudes toward the robot over longer periods may require additional metrics
that better capture how people perceive a long interaction with a robot. For example, in a long-term
study of a socially assistive robot, the faults of the system did not affect the overall acceptance
of the system by the participants [42]. Similar phenomena are likely to be observed in a social
navigation context and thus should be reasoned about when measuring long-term interactions.

6.2.4 The Limitations of Social Metrics Themselves. In addition to these concerns, metrics them-
selves have challenges, including subjectivity and scaling, relevance and weighting, and the trans-
ferability of results between robot morphologies.

(1) Human Ratings Are Subjective. Human ratings are by their very nature subjective, and they
depend on many factors such as cultural context, environmental context, goals or priorities
within a scenario, or their overall familiarity with robots. It is important to account for the
factors that all human participants experience, as well as attempt to characterize unique
factors relevant to the scenario that can affect how they perceive the scenario.

(2) Subjective Metrics Are Difficult to Scale. Expanding to a larger participant pool can help to
mitigate variations between individuals, but it can be hard to execute complicated scenarios
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with a large number of participants. Creating analytical models of certain sub-elements of
human reactions, such as how comfortable observers are with the proximity of the robot, can
potentially be done with studies of a more targeted scope, and then used in broader models
of human responses to robot behavior.

(3) Real-World Evaluation Is Difficult to Scale. The closer a study can get to emulating a real-world
scenario such as a busy street, a crowded airport, or a packed restaurant, the more it can
capture the effectiveness of a robot in this domain. However, creating these scenarios in a
laboratory environment is difficult. Eliciting natural behavior can be challenging, and many
social environments have a large volume of people entering and exiting which can be hard
to represent. Therefore, efforts are being made to record natural human behavior for use in
simulations to address this issue, along with blending multiple metrics to account for the
many aspects of a real-world deployment.

(4) Choosing Which Variables Are Relevant . Measuring all possible signals humans generate in
response to a robot is difficult. However, selecting any subset can neglect other useful signals.
For example, using only 2D poses disregards other very important inputs such as facial
expressions, gestures, or gaze [59]. Putting thought into which signals are most relevant to a
scenario and able to be robustly collect them is important.

(5) Weighting Multiple Metrics. The variety of useful metrics and their context dependence
suggest applying an ensemble of metrics, weighted to account for the parameters of a specific
scenario. The optimal method for doing this, however, remains open. It is worth considering
if this weighting may vary not only across different environments but also over the course
of a single path as the audience or priorities of the robot change.

(6) Non-Homogeneous Hardware. Robots have varying sensors and actuators. While some only
have access to their wheels’ motors and a LiDAR, others can inform pedestrians of their
presence and intentions, or share information using sound and visual cues. It is difficult to
consider these additional aspects analytically, so standardized metrics do not take them into
account. Unfairly, this limitation can make robots able to share such information appear less
socially capable than they are.

6.3 Assessment of Existing Social Navigation Metrics
For all the reasons outlined above, quantifying the quality of different social navigation strategies
is difficult. Beyond the inherent subjectivity of human ratings, social scenarios include many
stakeholders with varying priorities and thus different assessments of the importance of metrics.
For example, a passerby may primarily be focused on metrics of discomfort as the robot passes
them, while the recipient of a package may be focused on metrics of task success. A warehouse
manager may focus more on expediency, while a restaurant’s customers may find excess speed or
urgency unnerving. Social preferences also vary across cultures and groups. Therefore, there is no
‘best’ metric, only metrics appropriate for a given application or use case.

In all of these cases, the gold standard for evaluation is to collect subjective metrics reported
by humans directly experiencing the interaction. However, subjective metrics can be difficult to
scale to larger numbers of participants. A secondary issue is that the higher the density of feedback
requested, the more disruption to the social scenario being measured. Both of these issues increase
the demand for analytical or learned subjective metrics, and we discuss the considerations for this
in Section 6.2.4.

New metrics are often created to address issues that come up in new scenarios, and as social
navigation is being deployed in increasingly many new environments, more metrics are being
created to address these scenarios. It is also unsurprising that new metrics will be of particular
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value in the environments that demand their creation. This means that the number of metrics
available to assess performance can be daunting, and their value is very context-dependent.

After reviewing the related literature, we did not find a convincing method to quantitatively
compare different metrics to determine whether one is strictly better than the other. We suggest
that when using any social navigation metric it is essential to note both the metric’s original
context and the current one it is being applied to. As mentioned, survey-based metrics are generally
preferred for benchmarking, though their results are difficult to reproduce if they are not run
correctly and they are resource-intensive. All-encompassing learned metrics would be the next
best option for benchmarking, but unfortunately, none of the existing ones (see [4, 94, 123]) satisfy
the requirements of all applications and scenarios. Metrics focusing on specific phenomena are of
great importance when debugging and diagnosing an algorithm’s flaws, but are sometimes difficult
to use to compare disparate algorithms.

6.4 Recommendations for Metric Usage and Development
While many in the symposium argued that surveyed metrics are the gold standard, others pointed
out that they are challenging to get right, expensive to collect and sometimes inappropriate (e.g.,
for evaluating ablation studies where safety cannot be guaranteed). Learned metrics have been
proposed as a solution, but are not ready for adoption (e.g., no task-wise learned metrics are yet
available). Therefore, to measure social robot navigation, we recommend a balanced approach,
involving a common subset of hand-crafted metrics, recommendations for the iterative validation
of surveys, and suggestions for future metric development.

6.4.1 Recommendations for Hand-Crafted Metrics. To ensure a systematic and objective compar-
ison of social navigation algorithms, we suggest using a subset of existing hand-crafted navigation
metrics. The suggestion includes success-related metrics accounting for success itself, collisions,
and failures, as well as metrics related to trajectory properties and social aspects. These recom-
mended metrics can be found in Table 1, along with descriptions of the phenomena accounted for,
their required parameters, units, ranges, and references where a full mathematical definition can
be found.

A relevant characteristic of many of these metrics is that their values, and more importantly what
would be considered good ones, heavily depend on the task, the context where the experiments
take place, and the parameters of the metric (see Table 1). It is therefore good practice to explicitly
state the parameters used and context when reporting results.

It is also worth noting that the metrics in Table 1 are frequently reported as averages for a number
of experiments rather than for a single trajectory (e.g., Success (S) is often found as the Success
Rate (SR)). When reporting experimental results for multiple trajectories, providing distributional
information in addition to averages allows us to show valuable information, including outliers.
This is key when consistency is important, as it is the case of safety. Distributional information can
be provided, for instance, as histograms.

6.4.2 Recommendations for Survey Development. Gathering human perception with surveys
has a long history in HRI (see for example the discussion in [149]), but there is not yet a unified
approach to questionnaire development in social robot navigation. Following the social scenario
development approach of [34, 126, 171], we recommend an iterative approach in which versions of
questionnaires are proposed and then empirically tested to determine their validity [106].

While survey validity is a complex topic worthy of its own book [88], several concerns for the
design of questionnaires include assessing test-retest reliability (whether a survey gives stable
results over time), construct validity (whether a survey measures what it purports to measure), and
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Table 1. Suggested Hand-Crafted Metrics for the Evaluation of Social Navigation Systems

Metric Short Description Class Parameters Unit Range Cited

Su
cc
es
sm

et
ric

s

Success ( Binary variable describing whether the robot
reaches the goal. When averaged, it is referred
as Success Rate (SR).

NHT - Boolean {0, 1} [2]

Collision � Number of collisions in the trajectory. When av-
eraged it is referred to as Collision Rate (CR).

NHT Collisions to
terminate episode

Colli-
sion

0,∞ [72]

Wall collisions ,� Number of collisions against walls. NHT - Colli-
sion

0,∞ R@G

Agent collisions �� Number of collisions against humans or robots. NHT - Colli-
sion

0,∞ R@G

Human collisions �� Number of collisions against humans. Also called
H-collisions [18].

NHT - Colli-
sion

0,∞ R@G
[18]

Timeout before
reaching goal

)$ Binary variable accounting for failures caused by
a timeout.

NHT Time threshold Time-
out

{0, 1} R@G

Failure to progress �% Number of failures caused by not decreasing the
distance to the goal for a given period of time.

NHT Distance and time
thresholds

Failure 0,∞ R@G

Stalled time () Time where the magnitude of the speed of the
robot falls within a given threshold.

NHT Distance and time
thresholds

B 0,∞ [161]

Time to reach goal ) Time between task assignment and completion. NHT - B 0,∞ [46, 72]
Path length %! Length of the trajectory. NHT - < 0,∞ [46, 72]
Success weighted
by path length

(%! Success weighted using normalized inverse path
length, i.e., weighted using path length di-
vided by the max of the min distance and path
length [2].

NHT - Success 0, 1 [2]

Qu
al
ity

an
d
so

ci
al

m
et
ric

s

Velocity-based
features

+<8= ,
+0E6 ,
+<0G

Minimum, average, and maximum linear velocity
on a trajectory.

SHT - </B −∞,∞ [72]

Linear acceleration
based features

�<8= ,
�0E6 ,
�<0G

Minimum, average, and maximum linear accel-
eration on a trajectory.

SHT - </B2 −∞,∞ [72]

Movement jerk �<8= ,
�0E6 ,
�<0G

Minimum, average and maximum linear jerk (i.e.,
the second-order derivative of the linear speed).

SHT - </B3 −∞,∞ [72]

Clearing distance ��<8= ,
��<0G

Minimum and average distance to obstacles in a
trajectory.

SHT - < 0,∞ [72]

Space compliance (� Ratio of the trajectory with the minimum dis-
tance to a human under a given threshold. If the
threshold is 0.5<, it is referred to as Personal
Space Compliance (%(�) [83].

SHT Distance threshold < 0, 1 [164]

Minimum distance
to human

��<8= Minimum distance to a human in a given trajec-
tory.

SHT - < 0,∞

Minimum time to
collision

))� Minimum time to collision with a human agent
at any point in time in the trajectory should all
robots and humans move in a linear trajectory.

SHT - < 0,∞ [12]

Aggregated time �) Time taken for a subset of cooperative agents to
meet their goals.

SHT Cooperative
agents’ set

C 0,∞ [167]

The first tranche in the table is traditional navigation metrics, included to ensure that social navigation systems do not
regress on traditional navigation performance; the second tranche concerns aspects of the quality and socialness of
navigation. Citations refer to either papers or challenges defining the term, or R@G for metrics from an unpublished
Robotics at Google [53] robot deployment.

sources of bias (distorting factors that make the results hard to interpret). Assessing these factors
involves reviewing both individual questions and the design of the survey as a whole.

For surveys as a whole, the longer a survey is, the less reliable the answers are [5, 49], and the
more frequently surveys are given, the less likely people are to participate [128] a phenomenon
known as survey fatigue or more generally response burden on participants. Reducing response
burden is important not just to improve the quality of results but to respect the time of participants;
nevertheless, issuing surveys multiple times can help measure test-retest reliability, issuing surveys
to multiple populations can help measure bias, and including redundant questions can help measure
construct reliability and question utility.

For individual survey questions, it is important to ask them using techniques that have been
validated. For example, Likert scales [87] are widely used and provide a range of options like
“Strongly Agree, Agree, Disagree, or Strongly Agree.” While it is tempting to use consistent wording
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between questions, to reduce cognitive load on participants it is arguably better to formulate Likert
scale responses so they form direct responses to each question, along with an option to indicate the
question is not applicable. For example, to assess Principle P1, Safety, a questionmight ask “How safe
was the robot’s motion?” and give the responses “Unsafe, Somewhat Unsafe, Somewhat Safe, Safe,
or Not Applicable.” To evaluate overall navigation quality, some researchers have explored Likert
scales similar to performance-based employee rating systems (e.g., “Outstanding, Very satisfactory,
Satisfactory, Unsatisfactory, Poor”2) but no consensus yet exists here.3

Statistical analysis of experiments is discussed in depth in standard textbooks such as [32, 106],
but we highlight some key concerns for social navigation. Terms such as “significance” often refer to
statistical significance, a specific and contentious term in psychological literature [91] which should
not be used unless the proper statistical tests are conducted. To do so, experimental conditions
tested should be properly balanced counts (especially if questions are presented in multiple orders to
reduce first-response bias, which creates sub-conditions within the experiment). Properly balanced
experiment conditions enable the analysis of variance with tools like ANOVAs [32, 106, 152] and
Cronbach’s alpha [106, 153]. Cronbach’s alpha in particular can help determine whether a given
question is a reliable factor (see for example the discussion in Appendix D.4 of [171]) or should be
dropped in future surveys in favor of more reliable questions.

6.4.3 Recommendations for Future Metric Development. Because conducting human surveys is
expensive, symposium participants expressed interest in finding hand-crafted or learned algorithmic
proxies. For example, to gauge safety, some benchmarks measure ‘time-to-collision’ [12]. To
gauge comfort, some researchers [157, 158] have proposed some metrics to measure and limit the
unnecessary motion and direction changes by the robot in the presence of humans; others have
proposed ‘visibility indices’ which gauge the distance and angle at which robots first impinge on a
human’s field of view [146, 147]. Legibility is also highly connected to the field of view, as observers
need to be able to see a robot to make inferences about its movements and goals [154].

Future metric development should continue to explore learned or hand-crafted algorithmic
proxies for surveyed metrics that can be efficiently computed, enabling the development of more
efficient, repeatable, and scalable benchmarks. Validating these metrics might require collecting
and annotating a large-scale dataset with both algorithmic and surveyed metrics, which could be
used to compute the correlations between algorithmic proxies and their surveyed counterparts.
This dataset could also be used to learn metrics that capture the surveyed results, as done in [4, 94].
Another approach to learning social metrics could be AutoRL [30], which learns dense reward
functions useful for learning based on a sparse true objective; conceivably, data from surveys could
be used as the true objective to train a learned social reward.

6.5 Metric Guidelines
In general, social navigation systems should not just be good social systems, but robust navigation
systems, with a high SR, low collision rate, and a good SPL to ensure efficient experiments and
the safety of human participants. Many of these features can be determined in simulation before
deploying policies on potentially dangerous robots, but how social these policies are can only be
determined with reference to human reactions to robot behavior - either through direct human
surveys or learned metrics derived from human data.

Our recommendations for social metrics expand on these insights and summarize our broader
recommendations from Section 6.4: use a broad set of navigation metrics to ensure robustness,
attempt to use human survey metrics where feasible to evaluate socialness, validate those metrics
2https://helpjuice.com/blog/employee-evaluation-form
3https://www.performyard.com/articles/performance-review-ratings-scales-examples
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with standard tools, guard against sources of bias, but use metrics appropriately in each stage of
development.

(1) M1—Ensure Robustness Using Standard Metrics: To ensure social navigation algorithms are
good navigation systems, evaluations should report as many of the standard metrics of
Table 1 as feasible.

(2) M2—Validate Policies with Algorithmic Metrics in Simulation: Prior to deployment, algorithmic
metrics such as those in Table 1 can enable fast evaluation to filter out bad policies prior to
deployment.

(3) M3—Parameterize Metrics Appropriately in Context : Social metrics with parameters, such as
failure to progress or space compliance, should be appropriately parameterized given the
current context, and parameters should be reported for those metrics that require them (see
Table 1).

(4) M4—Use Learned Metrics to Help Iterate on Behavior : Where learned metrics based on human
data are available, they can provide insights to improve robot behavior, or acceptance tests
prior to deploying policies on a robot.

(5) M5—Use Validated Surveys to Evaluate Social Performance: Human surveys using validated in-
struments should be used to test the social navigation scenarios once the system is sufficiently
robust and reliable.

(6) M6—Set Up Experiments Consistently to Avoid Bias: Environmental complexity, subject se-
lection, robot familiarity, survey fatigue, and differing experimental setups can all distort
metrics. Use well-designed scenarios (see Section 7) to make metrics easier to compare.

(7) M7—Analyze Experiments Iteratively: Social contexts are complex and getting metrics and
surveys right are difficult; therefore, researchers should analyze experiments and iteratively
improve them.

(8) M8—Report Results in Depth: Point-wise estimates of single metrics can provide a distorted
view of the performance of a system. Experimenters should report a battery of traditional,
learned, and surveyed metrics, including both step-wise and task-wise metrics, as well as
histograms or other distributional information.

7 Social Navigation Scenarios
Social navigation scenarios are specifications of categories of HRIs that facilitate the collection
of data on human–robot behaviors and the communication of that data between researchers in a
common language.

Fundamentally, social robot navigation involves robots interacting with humans. The situations
in which we study these interactions range from controlled scenarios in the laboratory with small
numbers of humans and robots to large-scale in-the-wild studies with dozens of robots in many
uncontrolled pedestrian encounters. Following the symposium, participants engaged in substantial
discussion regarding the relative importance of studies along this spectrum.

—Proponents of large-scale in-the-wild studies argue they have good ecological validity, uncover
long-tail behaviors, enable more reliable assessments of human perceptions of robot behavior,
and enable data collection for unsupervised and reinforcement learning. These studies can
have good statistical reliability and can generate large datasets; however, they are expensive,
time-consuming, require heavyweight software architectures, and are suitable for policies
that are already reliable.

—Proponents of controlled in-the-lab scenarios argue they can also have good ecological validity,
prevent regressions on known issues, enable scientific analysis of algorithms and behavior,
and enable data collection for supervised and imitation learning. These studies are cheaper
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to run, generate data quickly, require less complex software, and are more appropriate for
iterating on policies in an earlier stage of development; however, it is harder to uncover
long-tail behaviors or to generate large datasets.

Social navigation scenarios are a research tool to help bridge the gap between in-the-wild studies
and controlled laboratory experiments by defining a clearly specified set of scenarios that can be
identified in data collected in the wild, set up as experiments in the lab, and analyzed consistently
based on the common definition. In the following, we will use the common Frontal Approach
scenario (Table 3), which involves a robot and a human traveling in opposite directions in an
environment large enough for them to pass each other, to illustrate how the same scenario can be
used in field studies, robot deployments, laboratory experiments, and even imitation learning:

—Field Studies: A Frontal Approach definition could be used to identify HRIs in data collected
from an in-the-wild field study, perhaps using the Behavior Graph method for analysis to
distinguish them from other interactions such as intersections or overtaking. This suggests
social navigation scenarios should be construed broadly so that long-tail behavior can be
analyzed. For example, if during a Frontal Approach a pedestrian trips and is helped up
by the robot, the pedestrian and robot may not exit the environment normally, but this is
nevertheless an event that happens in Frontal Approach scenarios and should be captured
in the data.

—Robot Deployments: A Frontal Approach definition could be used to set up a deployment to
elicit desired behaviors—for example, a robot could be deployed traveling back and forth on a
well-trafficked corridor. Thus, social navigation scenarios should be well-specified enough to
eliminate counterexamples (for example, a corridor must be wide enough for both robot and
human to pass to be considered Frontal Approach).

—Laboratory Experiments: A Frontal Approach definition can be used to set up a laboratory
experiment (or regression test) to evaluate the performance of a given policy compared to
alternatives—for example [126]. For the statistical analysis of this experiment to be successful,
both metrics and criteria for a successful test need to be defined. For example, in a laboratory
experiment, both the robot and the human need to attempt to cross the scenario environment,
whereas in a robot deployment or field study, humans may stop to take a phone call, or a
robot navigation stack may crash.

—Dataset Generation: When creating datasets for social navigation, scenario definitions can be
used to curate existing data for inclusion into the dataset or to guide the setup of robot de-
ployments or laboratory experiments designed to build that data. This scenario categorization
can then be used to capture information about the dataset. For example, a pedestrian dataset
could collect episodes each with a single scenario like Frontal Approach. In contrast, a
crowd dataset, with larger numbers of pedestrians interacting in a larger area, might have
episodes with several scenarios happening at once, like Frontal Approach, Intersection,
and Blind Corner.

— Imitation Learning: A Frontal Approach definition can also be used to collect episodes for
imitation learning. For this to be successful, additional criteria must be defined—for example,
which behaviors are considered successes or failures, or quality metrics which enable rating
episodes as better or worse—so a high-quality set of episodes can be collected to enable
training of a policy. In other words, while creating imitation learning is dataset generation,
not all datasets are good for imitation learning. In the imitation learning use case, Frontal
Approach episodes in which the robot or human fail to cross the scenario environment may
be marked as failures so they can be excluded by the learning algorithm.
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Table 2. Scenario Card for Frontal Approach

Social Navigation Scenario Card

Scenario Metadata
Scenario name Frontal Approach
Scenario description A robot and a human approach head-on in a passable space.
Scientific purpose Low-density pedestrian scenario applicable indoors and outdoors.
Scenario Definition
Geometric layout A space wide enough for the robot and human to pass each other.
Intended robot task The robot navigates from one side of the space to the other
Intended human behavior The human navigates in the opposite direction of the robot.
Scenario Usage Guide
Success metrics SR, (No) Collisions
Quality metrics P2: Comfort, P3: Legibility, P4: Politeness
Ideal outcome Robot goes around humans in a socially acceptable manner.
Failure modes 1. Robot collides with human

2. Robot fails to exit in time limit
Labeling criteria 1. Robot and human face each other

2. Robot and human move toward each other at the start of episode
3. Sufficient clearance exists for robots and humans to pass each
other

Note that in theory, all social navigation principles could apply to the “Quality Metrics” section, but the Scenario Card
should focus on the ones most relevant to this scenario. Arguably, all scenarios should focus on P1: Safety, but a scenario
like Entering Room might focus on P5: Social Norms (allow others to exit first), P6: Agent Understanding (determine
if occupants are leaving), and P7: Proactivity (moving to allow others to exit).

In the next section, we outline a methodology for identifying and specifying social navigation
scenarios that support this breadth of usage, present a “Social Navigation Scenario Card” which
enables scenarios to be clearly defined and disseminated, list common scenarios in the literature,
and conclude with guidelines for scenario development and usage.

7.1 Scenario Design Methodology
Interactions occur between humans and robots wherever robots are deployed. Many of their
interactions are unique, but others are common enough or important enough to warrant special
treatment—whether we are looking for them in data collected from field studies, trying to recreate
them in robot deployments and laboratory experiments, or trying to make them happen at scale
for dataset generation or imitation learning. Having a clear definition of what behavior we want
to identify, recreate or scale can ensure that we have good data, and can communicate it to other
researchers.

To facilitate this, we propose the use of scenarios defining HRIs and propose the following
methodology for defining scenarios relevant to social navigation. This consists of a three-step
process:

(1) Define the Scenario: Scenario definitions should be clearly specified enough to be identified
in data or set up as an experiment. Thus, the scenario designer should consider:
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(a) Intended Research Context : The research topic the scenario is designed to explore, for
example, low-density indoor pedestrian navigation or high-density outdoor crowd navi-
gation. Many scenarios are general enough to apply to most research contexts.

(b) Intended Robot Task:The high-level objective of the robot, for example, navigation between
two points, visual navigation, or guiding a person to a goal location.

(c) Intended Human Behavior : The high-level objectives of nearby people, for example,
navigating between two points, delivering a package, or following the robot to a goal
location.

(d) Success Metrics: the criteria that define the successful completion of the robot’s task.
While scenarios may play out in the wild in a variety of ways, the robot’s task should be
well-specified enough that it is unambiguous whether it succeeded.

(2) Evaluate the Definition: The way scenarios are designed affects the aspects of robot behavior
that they evaluate and what behaviors they elicit in humans, sometimes in unexpected ways
Therefore, we propose that designers should evaluate scenarios after their initial design,
assessing their ability to measure the desired robot behaviors. Well-designed scenarios should
have the properties of commonality, flexibility, and fitness to purpose.
(a) Commonality: Well-designed scenarios should be designed to evaluate the designer’s

intended criteria while maintaining identifiable characteristics that allow it to be grouped
and compared with similar scenarios in use in the community. Common categories of
scenarios are listed as sections of Table 3, and include “approach” or “hallway” scenarios
involving robots approaching people or objects from specific directions, “intersection”
scenarios where robots and humans cross paths, and “interpersonal” scenarios such as
robots leaving or joining conversational groups. Scenario designers should compare their
scenarios with these common scenarios to avoid introducing redundant scenarios when
existing scenarios are available.

(b) Flexibility: Well-designed scenarios should be broadly specified enough to capture the
full range of behavior that occurs in the wild. It is important to avoid “solutionizing” in
which scenarios prescribe intended robot or human behavior so narrowly that naturally
occurring variants are included. Instead, scenarios should have broad, flexible definitions
that enable them to capture behaviors that happen, along with clear success metrics to
evaluate whether that behavior came out as intended.

(c) Fitness to Purpose: Well-designed scenarios should allow the scenario designer to eval-
uate the adaptations of robot behaviors with which they are concerned. For example,
researchers have explored how proactive robot behaviors can improve social interactions
during navigation [73]. To evaluate robots that exhibit proactive cooperation, the scenario
must be flexible enough to allow proactive cooperativeness interactions to occur. Early
drafts of scenarios should be piloted to confirm that desired behaviors can be detected
and elicited and that success metrics measure what is intended.

(3) Communicate the Definition: Once a scenario has been evaluated, it should be communicated
clearly and consistently. A scenario definition should be specific enough to replicate, so other
researchers can identify occurrences of the scenario in their data, recreate it in the laboratory,
and determine whether instances of a scenario correspond to the intended outcome for the
human or robot.

Social navigation scenario development can be seen as a step toward the more formal sce-
narios engineering approach being adopted in intelligent vehicle research [84–86]. To facilitate
communicating scenarios, we propose a social navigation scenario card, presented next.
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Table 3. Example Social Navigation Scenarios

Scenario
Name

Scenario
Description

Phys.
Env.

Geom.
Layout

Scientific
Purpose

Robot
Role

Robot
Task

Human
Behavior

Ideal
Outcome

Related
Scenarios

Cited In

Hallway Scenarios
Frontal
Approach

Pedestrian and ro-
bot approach head-
on.

Generic Pass-
able
space

Pedestrian
interaction

Any Navigate
A to B

Navigate B
to A

Robot / hu-
mans pass

Ped.
Obstruct

[50, 126,
167]

Pedestrian
Overtaking

Pedestrian over-
takes moving robot.

Generic Pass-
able
space

Pedestrian
interaction

Any Navigate
A to B

Navigate A
to B

Human
passes robot

Down Path [26]

Robot
Overtaking

Robot overtakes
moving pedestrian.

Generic Pass-
able
space

Pedestrian
interaction

Any Navigate
A to B

Navigate A
to B

Robot pass-
es human

[50, 167]

Intersection
No Gesture

Robot and human
cross at intersect.

Indoor Inter-
section

Pedestrian
interaction

Any Navigate
A to B

Cross navi-
gate

Both pass
no collision

[27, 50,
161, 167]

Intersection
Gest. Wait

Robot told towait at
intersection.

Indoor Inter-
section

Pedestrian
interaction

Ser-
vant

Navigate
A to B

Cross navi-
gate

Human
goes then
robot

Gesture
Proceed

[126]

Blind Corner Robot and human
meet at blind cor-
ner.

Indoor Corner Pedestrian
interaction

Any Navigate
A to B

Navigate B
to A

No collision
/ obstruc-
tion

[126, 171]

Doorway Scenarios
Narrow
Doorway

Robot and human at
narrow doorway.

Indoor Room
and
door

Pedestrian
interaction

Any Navigate
A to B

Navigate B
to A

No collision
/ obstruc-
tion

Narrow
Arch

[126]

Entering
Room

Robot enters room
occupied by human

Indoor Room
and
door

Pedestrian
interaction

Any Navigate
out to in

Navigate in
to out

Robot lets
human exit

Entering
Elevator

R@G

Exiting Room Robot exits room
while person en-
ters.

Indoor Room
and
door

Pedestrian
interaction

Any Navigate
in to out

Navigate
out to in

Robot exits
first

Exiting
Elevator

R@G

Interpersonal Scenarios
Joining a
Group

Robot joins group
of robots or people.

Generic Open
space

Group
Interaction

Any Navigate
to group

Continue
convers.

Robot joins
group

Leaving a
Group

[50, 161]

Following A robot follows a
person.

Generic Walk-
ing
space

Joint
navigation

Ser-
vant

Follow
human

Lead robot Robot fol-
lows person

Accompany
Peer

[50]

Leading A robot leads a per-
son.

Generic Walk-
ing
Space

Joint
Navigation

Leader Lead
human

Follow
robot

Robot leads
person

Tour Guide [50]

Crowd Scenarios
Crowd
Navigation

A robot navigates
through a crowd.

Generic Pass-
able
space

Crowd
navigation

Any Navigate
thru

Mill about No collision
/ obstruc-
tion

Robot
Crowding

Various

Parallel
Traffic

Crowd moves par-
allel to the robot.

Generic Pass-
able
space

Crowd
navigation

Any Navigate
A to B

Mill from A
to B

No collision
/ obstruc-
tion

Circular
Crossing

[167]

Perpendic.
Traffic

Crowd moves per-
pendicular to robot.

Generic Inter-
section

Crowd
navigation

Any Cross
navigate

Mill from A
to B

No collision
/ obstruc-
tion

Plaza
Crossing

[167]

Specialized Scenarios
Object
Handover

A robot hands an
object to a human.

Generic Pass-
able
space

Interactive
navigation

Ser-
vant

Deliver
object

Receive ob-
ject

Human
takes object

Robot
Courier

[161]

Crash Cart Robot delivering a
medical product.

Indoor Pass-
able
space

Interactive
navigation

Leader Deliver
object

Receive ob-
ject

Delivery of
medicine

Food
Delivery

This
article

For illustrations of the geometric layout, see Figure 7. Closely related scenarios are listed in the second-to-last column.
Citations refer to either papers or challenges defining the scenario, or R@G for scenarios from an unpublished Robotics at
Google [53] deployment, developed according to the protocol in [126].

7.2 Social Navigation Scenario Cards
Ideally, a social navigation scenario consists of a well-defined social interaction including robots
performing tasks, people performing behaviors, and relevant features of their environment. This
definition should be specific enough that an encounter can be labeled as an instantiation of the
scenario, but loose enough that it captures a wide variety of behaviors. For ease of reusability,
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scenarios should ideally be realistic in that they represent real-world scenarios, scalable in that
they can be set up at low cost, and repeatable in that the same scenario could be conducted many
times under similar conditions. However, scenarios may encompass a wide variety of situations,
from a simple Frontal Approach of a robot and human passing each other up to the complexity
of a robot navigating a crowd exiting a stadium, and scenario cards should remain flexible enough
to capture these use cases.

Following work on “model cards” in the machine learning community [104], we propose a
“Scenario Card” approach to defining scenarios which labels the scenario with a set of features
that unambiguously define it. scenario cards have the following three major elements: (a) scenario
metadata that defines the name, description, and scientific purpose of the scenario; (b) scenario
definition which clearly describes the environment, intended human behavior, and intended robot
task; and (c) a scenario usage guide, which provides additional information for specialized usages
such as evaluation metrics, success, and failure criteria.

7.2.1 Scenario Metadata. The scenario metadata identifies a scenario in an unambiguous way
for other researchers, including the type of the scenario (doorway, hallway, etc.), its name, its
description, and its scientific purpose (crowd navigation, low-density pedestrian, interactive, etc.).
For example, a head-on pedestrian approach scenario might be labeled Frontal Approach, which
we will use as a running example.

—Scenario Type: Scenarios can be grouped into broad classes such as head-on approaches vs.
intersections, doorways, and elevators, crowd vs. group, interactive and accompanying, and
so on. Identifying the group a scenario belongs to can help researchers decide whether to
include it for coverage or exclude it as redundant.

—Name: The scenario should be given a unique name that does not conflict with existing
scenarios used within the community.

—Description: The scenario should have a brief description that communicates what is intended
to happen in it.

—Research Context : Scenarios often are targeted at specific scientific purposes along various
dimensions of research interest - for example, indoor low-density pedestrian scenarios or
outdoor high-density crowd scenarios. Key elements that are often distinguished include:
–Location: Indoor, Outdoor, or General. Indoor and outdoor navigation have different con-
straints and are often studied separately; however, some scenarios, like Frontal Approach,
can occur in many contexts.

–Density: Pedestrian or Crowd. Low-density pedestrian studies (where robots encounter only
a few individuals at a time) are often studied separately from high-density crowd scenarios
(in which people exhibit qualitatively different behavior).

–High-Level Task: Navigation, Delivery, or Interaction.Many scenarios focus on pure navigation
tasks, but others involve object delivery, interacting with humans, leaving and joining
groups, and so on.

7.2.2 Scenario Definition. The scenario definition defines roughly what is meant by the scenario,
in a precise but broad way that allows scenarios to be identified but not so restrictive as to prevent
recording important behaviors. For example, Frontal Approach scenario definition should enable
us to recognize that a robot and human are approaching head-on, but at the same time capture an
interaction where the human changes their direction or stops to answer their phone.

—Geometric Layout : Scenarios often occur in specific physical environments, such as corridors,
doorways, blind corners, or near elevators. The important features of the environment should
be noted; features that can vary should also be noted so the scenario is not overspecified.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.



Principles and Guidelines for Evaluating Social Robot Navigation Algorithms 34:33

— Intended Robot Task: The number of robots and their desired behaviors should be recorded.
A robot simply navigating around a pedestrian has different behaviors than one which is
specifically attempting to navigate to a given target. Typical robot tasks are a robot heading to
a pre-defined position, a robot guiding a person to a destination, or a robot delivering an item.

— Intended Human Behavior : The expected human behavior should be specified. In the scenario
definition, behaviors should be specified clearly enough to recognize the behavior in data or
to enable a human to attempt to perform it, but not too specific that diverse behaviors could
not be collected.

7.2.3 Scenario Usage Guide. The scenario usage guide specifies how the scenario is used in
practice and contains additional information that goes beyond the definition, such as idealized
outcomes or instructions for human confederates for experimental setups. This is the place where
a Frontal Approach scenario would express that the ideal outcome is that the robot and human
pass each other without incident and exit on the opposite sides of the scenario area.

—Labeling Criteria: A clear set of criteria should be provided so that scenarios can be labeled
in logs data or rejected in the event of a structured run. For example, for an intersection
scenario, one could demand that the robot passes within two meters of the human and that
their intended paths at least potentially cross.

—Success and Quality Measures: To evaluate how well the robot performed in the scenario, we
may also want to specify “SuccessMeasures” and “QualityMeasures” specific to a scenario such
as the ability of the robot to ensure legibility of its behavior, to limit and control disturbance,
to facilitate human action and situation understanding, and so on.

— Ideal Outcome and Failure Modes: To enable researchers to evaluate robot performances in
episodes for imitation learning or data analysis, the ideal outcome should be outlined, for
example, that a robot should not collide with a human at a blind corner. Also, to help debug
scenarios and guard the safety of human participants, failure modes such as colliding with
walls, or stopping dead after a near-collision, should be outlined. We include failure modes
in ideal outcomes in the scenario usage guide and not the definition because researchers
interested in data collection do not want to artificially exclude arbitrary outcomes that can
occur in the wild; however, this is critical information for imitation learning researchers trying
to craft behavior.

—Human Behavior Playbook: If a scenario is designed to be created in a repeatable way as part
of an experiment, a specific script or rubric should be provided so that the participants can
perform their roles appropriately. For example, intended human behavior might be travelers
in a crowded railway station, or workers going alone or with colleagues in an office context.
These could include variations in the behaviors: for instance, some travelers might be in a
hurry while others have more time. Also, there could be several categories of users in a given
context that might act and react differently.

—Contextual Information: Principle P7 notes that a robot’s behavior should depend on context:
for instance, a robot should behave differently if the place is very calm and needs silence or if
it is a busy place, so ideally robots should recognize in which contextual situation a scenario
is happening. Success metrics, ideal outcomes, failure modes, human behavior, and more can
be altered by the context, so it can be useful to outline any important contextual variants of
the scenario and how they affect intended robot or human behavior.

7.3 Example Social Navigation Scenarios
To effectively evaluate social navigation policies, they should be exercised in a set of scenarios that
address the common use cases that come up in their intended context. For example, policies for
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Fig. 7. Geometric layout and intended human and robot behavior for example social navigation scenarios
from Table 3. The blue circles, arrows, dotted lines, and dotted circles represent the robot, its direction of
motion, its intended path, and its intended destination, respectively; red figures represent the corresponding
items for humans. Gray backgrounds represent obstructions, while green figures represent signals or gestures
emitted by an agent such as a gesture to stop or go ahead. Note that sample paths and gestures are provided
as examples to make the graphics clear; the actual scenario card definition should be flexible enough to
capture a range of behaviors.

interacting with pedestrians in low-traffic areas should be tested in common hallway and doorway
scenarios, policies designed to navigate through crowds should handle common scenarios like
traveling parallel to or perpendicular to the flow of traffic, and policies for interaction should handle
scenarios like leaving and joining groups.

Ideally, policies should be evaluated using standard benchmarks as discussed in Section 8; how-
ever, for a new research purpose a suitable benchmark may not yet exist. Nevertheless, researchers
should try to find scenarios that are already in use in the field and apply them as comprehensively
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as possible so that the evaluation of policies is meaningful and can be reasonably compared to
other work in the literature.

To facilitate this process, we summarize common social navigation scenarios in Table 3. Dozens
of social navigation scenarios have been proposed in the literature, and we cannot list them
comprehensively; however, we provide references above to relevant prior work using these scenarios
where available. Also note that scenarios can be grouped into a broad variety of scientific purposes,
including pedestrian navigation, crowd navigation, and interaction scenarios, which can help guide
researchers in their selections.

(1) Pedestrian Navigation: Low-density pedestrian navigation scenarios study how pedestrians
interact with robots a few at a time and include common hallway and door interaction
scenarios. Common pedestrian scenarios often include Frontal Approach where a human
pedestrian approaches a moving robot head-on, Robot Overtaking where a robot overtakes
a slower-moving human, Intersection where a robot passes a human at a right angle,
Blind Corner where a robot and a human pass each other at an angle with poor visibility,
Narrow Doorway where which a robot and a human attempt to exit a doorway in opposite
directions, and so on.

(2) Crowd Navigation: High-density crowd navigation scenarios study how robots can navigate
dense human crowds. While there exist commonalities shared by navigating pedestrians
[107], qualitatively unique behaviors can emerge during crowd navigation, for example
when walking agents form social groups [108]. Common scenarios for crowd navigation
include Parallel Traffic where a robot is going with or against the flow of moving pedes-
trians, Perpendicular Traffic where the robot must cross a flow of pedestrians, Circular
Crossing and Random Crossings where pedestrians are crossing a plaza or room, and even
Robot Crowding where a robot is surrounded by stationary pedestrians and must extricate
themselves.

(3) Interaction: Interaction scenarios involve a task that places constraints on robot navigation,
such as group navigation skills like Joining Groups of pedestrians in conversations, Leav-
ing Groups of pedestrians, or interactive skills such as Object Handover where robots
deliver or receive an item, Question Answering where robots answer or ask questions,
and Continuous Monitoring where a robot observes individuals exercising or performing
another activity.

The columns of Table 3 capture many of the features of the social navigation scenario card,
though we cannot list all of them for space. Referring back to our running example, Table 2 shows
an example of how the social navigation scenario card could be retroactively applied to one of the
most common social navigation scenarios, Frontal Approach, which appears in [50, 126, 167]
among others.

7.4 Scenario Guidelines
Scenario guidelines can be broken into three groups following the methodology outlined above:
guidelines for new scenario development, guidelines for evaluating scenarios for research purposes,
and guidelines for communication. For new scenarios, we propose the following guidelines:

Guideline N1: Specify Research Context. New social navigation scenarios should clearly define the
research context under which they are expected to apply.

Guideline N2: Define Intended Robot Task. New social navigation scenarios should clearly define
the task the robot is expected to accomplish and not just the start and end poses for navigation
alone.
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Guideline N3: Define Intended Human Behavior. Scenarios should specify what human participants
are intended to do in the scenario.

Guideline N4: Define Success Metrics. Scenarios should include metrics to gauge the success or
failure of the task.

To evaluate the usefulness of scenarios, we recommend:
Guideline N5: Cover Common Scenarios. To adequately evaluate social navigation algorithms,

researchers to try to include good coverage of scenarios which are used commonly in the field,
such as those listed in Table 3.

Guideline N6: Ensure Scenario Flexibility. Scenarios should be broadly specified enough to capture
the full range of behaviors that can occur.

Guideline N7: Evaluate Fitness for Purpose. Scenarios should identify or elicit the desired behaviors
and enable the desirable properties of robot behavior to be evaluated.

Finally, we recommend the use of scenario cards as a standard communication format:
Guideline N8: Use Scenario Cards. When communicating scenarios—either new scenarios, or

specializations of scenarios used for specific research purposes—use the scenario card format to
clearly communicate scenario content.

8 Social Navigation Benchmarks
Social navigation benchmarks improve upon individual laboratory experiments or well-defined
scenarios by collecting a set of scenarios into a benchmark suite with well-specified metrics,
enabling the comparison of a variety of different methods against each other. However, existing
benchmarks focus on different aspects of the social navigation problem outlined in Section 3,
using different permutations of the factors we outlined in Section 5. Hence, the results of these
benchmarks may be more or less useful for researchers investigating different aspects of the social
navigation problem. In this section, we advocate a set of criteria to make benchmarks useful across
the social navigation community and review existing benchmarks in use with regard to these
criteria.

First, we analyze benchmarks in use in the social navigation community, grouping them into
benchmarking protocols, benchmarking environments, and benchmark challenges. Then, we ana-
lyze the strengths and weaknesses of these benchmarks, abstracting out criteria for good social
navigation benchmarks, including evaluating social behavior using quantitative metrics and well-
validated questionnaires grounded in human data. Finally, we make recommendations on how to
improve the state of social navigation benchmarking and discuss how social benchmarking could
be integrated with standard navigation benchmarks as regression tests of navigation behavior,
which ensure that previously successful behaviors do not degrade as changes are made [113, 165].

8.1 Expanding the Factors for Benchmark Analysis
In addition to the factors listed in Section 5.1, additional aspects must be considered for benchmarks:

Simulation Platform. Benchmarks must specify how to set up an evaluation, but are more useful
if that evaluation is already set up on a commonly available simulation platform.

Associated Dataset. Some benchmarks specify one or more datasets of reference behaviors used
for comparisons.

Provided Baselines. Some benchmarks specify a set of baseline policies that can be used for
comparisons.

Challenge Leaderboard. Benchmark challenges may also provide a leaderboard to enable policies
among different teams to be compared publicly.
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Downloadability. Ideally, a benchmark should include a downloadable software suite to enable
replication of results.

Most Recent Update. Because software platforms evolve, benchmarks should be updated recently
to ensure they are usable with current hardware and software.

Robot Hardware Platform. To make benchmarks most useful, they should support a wide variety
of robot morphologies or custom robot morphologies so researchers have the best chance of
generating comparisons for their target platform.

Human Behavior Authoring Methods. Benchmarks must include agents other than the robot,
whether human or other robots. Support for realistic human behavior or replayed datasets can
improve a benchmark’s fidelity and usefulness.

8.2 Existing Social Navigation Benchmarks
In the social navigation literature, the term “benchmark” is sometimes applied to labeled datasets
of reference behavior, which we discuss in Section 9. In this section, we focus specifically on social
navigation benchmarks that combine at least three components: (a) a social navigation system (such
as a simulator) that can run algorithms and pedestrians (b) in well-defined scenarios (c) with metrics
for evaluation; these benchmarks may optionally specify datasets of human or robot behavior for
comparisons. Full benchmarks can be broken into three classes: (1) benchmarking protocols which
enable the construction of experiments along well-specified principles, like the Social Navigation
Protocol [126], (2) benchmarking environments which enable comparison of algorithms against
baselines in environments, including DynaBarn [109], gym-collision-avoidance [39], HuNavSim
[122], and SocNavBench [12], and (3) benchmark challenges which also provide a platform or
forum to share results, including CrowdBot [45], iGibson [83, 145], and SEANavBench.4 In the
following, we describe these benchmarks; see Table 4 for a side-by-side comparison based on the
previously described factors and Figure 8 for a visual description of some of the more commonly
used benchmarks.

8.2.1 Benchmarking Protocols. The Social Navigation Protocol [126] is an industry bench-
mark proposed by Robotics at Google [53] and used in [34, 126, 171] to evaluate the performance
of a series of learning-based model predictive control policies for social robot navigation (though
the protocol was intended to be applicable to the evaluation of any policy, learning or not). This
protocol involves selecting social navigation scenarios of interest, such as Frontal Approach, Blind
Corner, Corridor Intersection, and so on. Each scenario’s HRI is defined by the start and end of the
robot’s trajectory and a short description of what is expected to happen for the human. This serves
two purposes: enabling the collection of expert human trajectories for training social navigation
policies, and evaluating policies on the same scenarios with low variability. Over the course of
[34, 126, 171], the protocol was iteratively improved. For example, the questionnaire proposed
in [126] was analyzed in [171] to identify reliable factors according to Cronbach’s alpha, which
were used to update the questionnaire for [34], which enabled more extensive analysis. While the
Social Navigation Protocol can be applied to a wide variety of setups, it does not provide a
downloadable, simulated environment, and must be manually set up for each experiment.

8.2.2 Social Navigation Benchmarks. ArenaBench [72] is a downloadable, simulated social
navigation benchmark designed to test how navigation algorithms perform under different tasks.
Building on the 2D Flatland5 and 3D Gazebo [76] simulators and the Pedsim [51] implementation of
4https://seanavbench.interactive-machines.com/
5https://flatland-simulator.readthedocs.io/en/latest/
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Table 4. Characteristics of Existing Social Navigation Benchmarks

Benchmark Arena-
Bench

CrowdBot DynaBarn gym-coll.-
avoidance

Hu-
NavSim

iGibson SocNav-
Bench

SeaNav-
Bench

Social Nav.
Protocol

Factors for Analysis
Benchmark
classification

Benchmark Challenge Benchmark Benchmark Benchmark Challenge Benchmark Challenge Protocol

Benchmark
context and scope

Dynamic
obstacle
benchmark

Crowd
simulation
benchmark

Dynamic
obstacle
benchmark

Collision
avoidance
benchmark

Human
simulation
benchmark

Social
navigation
benchmark

Social
navigation
benchmark

Social
navigation
benchmark

Human-
robot expt.
design

Physical
environment

Indoor Indoor Synthetic Synthetic Indoor Indoor Indoor
and outdoor

Indoor
and outdoor

Principally
indoor

Intended human
user type

Synthetic
pedestrian

Synthetic
pedestrian

Varied
human
motion

Synthetic
pedestrian

Varied
resp to
robot

synthetic
pedestrian

Synthetic
pedestrian

Synthetic
pedestrian

Human
coworkers

Supported robot
tasks

Navigation Navigation Navigation Navigation Navigation Navigation Navigation Navigation Navigation

Social scenarios
evaluated

3 worlds,
5/10 peds

Basic
crowd
scenarios

60 crowd
scenarios

Multi-
agent
scenarios

House,
cafe,
warehouse

15 house
scenes

5 curated
environ-
ments

TBD 6 social nav.
scenarios

Coverage of
corner cases

Diversity,
random

Not tested Diversity,
random

Not tested Not tested Not tested Not tested TBD Not
specified

Simulation
platform

Flatland,
gazebo

Unity Gazebo Custom Gazebo iGibson Soc-
NavBench

SEAN 2.0 None

Benchmarking
dataset

None CrowdBot None None None None UCY and
ETH

UCY and
ETH

None

Human behavior
authoring

Pedsim UMANS Multiple al-
gorithms

Baseline
policies

Soc. force,
behav. tree

ORCA Replay,
planned

Replay,
soc force

Scripted

Human simula-
tion fidelity

Walking
humans

Walking
humans

Moving
cylinders

Moving
cylinders

Walking
humans

Moving
humans

Walking
humans

Walking
humans

Real
humans

Supported robot
embodiments

Jackal,
burger,
robotino

Pepper,
wheelchair,
CuyBot,
Qolo

Custom
robots,
ClearPath
Jackal

Cylinders ROS
Gazebo-
Compatible

8 real,
2 mujoco

Simulated
mobile
robot

Fetch,
Jackal,
Turtlebot,
Warthog

Human-
scale robots

Communication
modalities

None None None None None None None None Human ges-
tures

Challenge
leaderboard

None None None None None 2021 None 2022 None

Benchmark last
updated

2022 2021 2023 2022 2023 2021 2022 2022 2022

Guidelines for Benchmarks
B1: Evaluate Social
Behavior

Yes Yes Yes Yes Yes Yes Yes Yes Yes

B2:Quantitative
metrics provided

Many Many Succ. rate Succ. rate,
Time2Goal

Many Succ. rate,
PSC

Many Many No

B3: Baseline
policies Provided

SOA nav,
RL policies

No SOAnav,
RL policies

SOA social,
worst-case

No SOA RL SOA social,
worst-case

SOA social,
worst-case

No

B4: Scalable,
repeatable

Simulated,
download

Simulated,
download

Simulated,
download

Simulated,
download

Simulated,
download

Simulated,
download

Simulated,
download

Simulated,
download

Setup req.,
phys. eval

B5: eval grounded
in Human Data

No No Demo.
pipeline

No No No No SEAN-EP
extension

Yes

B6: Use validated
instruments

No No No No No No No No Validation
in process

the Social Forces Model (SFM) [62], ArenaBench provides the ability to evaluate both classical
and learning-based approaches in the Robotic Operating System (ROS) [129] framework. In
addition to providing tools for automatically andmanually creating scenarios, ArenaBench supplies
both the non-learned baselines MPC [137], DWA [44], TEB [136] and the learned baselines NAVREP
[38], Gring [55] as well as ArenaBench’s own trained ROSNAV approach. Supported robots include
the Robotis Turtlebot3, ClearPath Jackal, and Festo Robotino 4. ArenaBench provides a variety of
navigation metrics including SR, collision, time to goal, path length, velocity, acceleration, jerk,
curvature, angle over length, roughness, and clearing distance. However, ArenaBench does not at
this time support human evaluation of robot behavior.

DynaBARN [109] is a downloadable, simulated social navigation benchmark designed to test how
algorithms respond to a variety of different pedestrian models. Building on the barn navigation
benchmark [124], DynaBARN provides 60 environments in the Gazebo simulator. DynaBARN
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Fig. 8. Commonly used social benchmarks. Benchmarks range from abstract tests of dynamic obstacle
avoidance to simulated interactions with moving humans of varying degrees of fidelity to protocols for setting
up physical experiments in well-specified scenarios.

evaluates algorithms against social behavior through crowds of cylindrical pedestrians controlled by
motion trajectories specified by polynomials of different orders and different numbers of pedestrians.
It is customizable to different robot platforms, with a Jackal provided. Only SR (collision-free
navigation reaching the goal) is provided as a metric, though the platform is extensible. DynaBARN
provides several baselines including DWA [44], TEB [136], a behavior cloned [127] policy, and
a TD3 [48] RL policy. While DynaBARN does not support human evaluation of robot behavior,
it includes a demonstration pipeline to collect human teleoperation baselines of navigation in
dynamic environments.

gym-collision-avoidance [39] is a downloadable, simulated benchmark used to evaluate multi-
agent collision avoidance. Created to evaluate the GA3C-CADRL algorithm [39, 40] against the
baselines ORCA [162], SA-CADRL [26], and DRLMACA [90], this benchmark provides a variety
of multi-agent scenarios involving cylinders in simplified synthetic environments and measures
SR, collisions, stuck and time-to-goal metrics. However, it focuses on policy-controlled agents
interacting with each other and does not support human evaluation of robot behavior.

HuNavSim [122] is a downloadable, simulated benchmark focused on improving the develop-
ment of social navigation systems around a variety of human behaviors. HuNavSim combines
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Behavior Trees (BT) [33] and the SFM [62] to provide a variety of human behaviors ranging from
indifferent, surprised, curious, fearful and aggressive. HuNavSim is implemented as a framework
that can work with various simulators and provides a plugin to work with ROS2 and Gazebo.
HuNavSim provides a variety of metrics comparable to those used in the SEAN simulator [161]
and other benchmarks but does not provide baseline policies or a way to evaluate robot behavior
with human ratings.

SocNavBench [12] is a downloadable, simulated benchmark used to evaluate social navigation
algorithms against pre-recorded episodes of human pedestrian behavior drawn from the ucy [82]
and eth [119] datasets. SocNavBench provides visually realistic pedestrians and environments, as
well as baselines based on the SFM [62], ORCA [162], and SA-CADRL [26] as well as a pedestrian-
unaware policy. SocNavBench provides a wide variety of metrics in areas such as path quality,
motion quality, robot–pedestrian interaction, and episode statistics. However, SocNavBench’s
purpose is to automatically generate scores, so it makes the design decision to focus on automatically
generated metrics that approximate human ratings instead.

8.2.3 Social Navigation Challenges. The CrowdBot [45] Challenge is an effort to develop a
benchmarking platform for social robot navigation in dense crowds. CrowdBot supports four
different robot morphologies interacting with simulated crowds of walking humans controlled
by a flexible framework called UMANS [163], with several crowd setups provided in the initial
benchmark. CrowdBot is a downloadable, simulated challenge;6 initial phases were held in 2020
and 2021 but a full public challenge has not yet been held.

The iGibson Challenge at the CVPR 2021 Embodied AI Workshop7 is a social navigation bench-
mark based on the eponymous iGibson [83, 145] simulation environment for navigation and
manipulation tasks in household scenes. In this benchmark challenge, robots must navigate to
targets without collision among pedestrians [120], which are simulated via the ORCA model [163]
in fifteen interactive indoor household scenes. Evaluation metrics include Success weighted by
Time Length for reaching the goal quickly, and PSC for maintaining a comfortable distance from
all pedestrians. This benchmark enabled quantitative comparison of approaches from over a dozen
teams, including methods based on techniques like DD-PPO [168], PPO [143], SAC [56], and so on,
providing a clear picture of which algorithms were superior for the task. iGibson is a download-
able, simulated challenge, but it does not include human ratings, and in 2021 did not include on-
robot tests.

The SEANavBench Challenge is a social navigation benchmark created for the SEANavBench
workshop8 held at ICRA’22. SEANavBench combines SocNavBench [12] within the SEAN 2.0
[161] simulator which enables social navigation algorithms to run on simulated robots via ROS in
environments rendered in the Unity game engine. Social navigation algorithms can be evaluated
in simulated environments across a variety of environment sizes, crowd densities, and pedestrian
behavior, including simulated pedestrians and replay of pedestrian datasets.This enables the analysis
of how algorithms can succeed or fail as environmental conditions change and the measurement of
performance using a variety of metrics. SEANavBench is a simulated benchmark to which users
can upload their code and compare performance against other submissions and baselines. While
the public version of the challenge did not use human ratings, SEANavBench uses SEAN-EP [159]
to run the SEAN 2.0 simulation environment on the web, which could be used to collect human
feedback.

6https://gitlab.inria.fr/CrowdBot/CrowdBotUnity/-/tree/master
7https://svl.stanford.edu/igibson/challenge2021.html
8https://seanavbench.interactive-machines.com/
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8.3 Strengths and Limitations of Existing Benchmarks
As we can see from Table 4, social navigation benchmarks support a variety of scopes, from
dynamic obstacle avoidance to HRIs to navigation through crowds. All attempt to address features
of social behavior and many of them are downloadable, simulated benchmarks that can be efficiently
deployed and which provide metrics for evaluation and sometimes baselines for comparison.

Broadly speaking, however, different types of benchmarks have characteristic limitations: (a)
scalable benchmarks tend not to ground their evaluations in human data, (b) benchmarks that
use human data tend to need manual setup or additional components, (c) protocols for designing
experiments focus only on human evaluations, and (d) few benchmarks have meaningful coverage
of edge cases of navigation behavior.

We believe these limitations are resolvable, and next present our recommendations for how good
benchmarks should be designed and outline steps the community could take to improve existing
benchmarks.

8.4 Properties of a Good Social Navigation Benchmark
Existing social navigation benchmarks have many purposes, from testing in large crowds, smaller
social scenarios, algorithm improvements, and even tests of benchmark fidelity themselves. How-
ever, for the results of one benchmark to be useful to the rest of the community, it is important to
have a common language for benchmarking and to have a shared understanding of what it is that a
benchmark tests.

To ensure that social navigation benchmarks evaluate approaches for social navigation in a
way that communicates their results broadly in the social navigation community, we argue that
benchmarks themselves should be evaluated against a set of commonly agreed-upon criteria.

Based on how benchmarks are used in the field and what results they need to communicate,
we recommend that benchmarks (1) evaluate social behavior, (2) include quantitative metrics,
(3) provide baselines for comparison, (4) be efficient, repeatable, and scalable, (5) ground human
evaluations in human data, and (6) use well-validated evaluation instruments. Next, we unpack
these criteria and explain how they should guide the development and usage of benchmarks.

(1) Guideline B1: Evaluate Social Behavior : A good social benchmark should evaluate the proper-
ties of algorithms in social scenarios which involve humans and robots interacting. Therefore,
a social benchmark should have metrics related to social behavior and not just contain pure
navigation metrics such as SPL [2] or pure task metrics such as SRs.

(2) Guideline B2: Include Quantitative Metrics: The benchmark should provide a breadth of
quantitative metrics, enabling researchers with different goals to use the benchmark to
evaluate their algorithms with respect to their task and context and to compare to other
approaches in the literature; common metrics can be found in Section 6. Quantitative metrics
are ideal to enable comparisons between approaches; including those which are objectively
measurable (e.g., PSC [164]) and those assessed with validated instruments (such as Likert
scale evaluation with validated questions). Benchmark metrics should measure not just
socially relevant concerns but also traditional navigation performance, such as task success,
speed of performance, safety, and proximity to humans.

(3) Guideline B3: Provide Baselines for Comparison: At a minimum, it is recommended to have
baseline policies that show worst-case performance (e.g., a straight line planner that stops at
obstacles) to serve as a lower bound for the benchmark. An upper bound oracle performance
(e.g., demonstrations from a human, or an appropriate state-of-the-art algorithm) can also be
provided if feasible. Ideally, if a state-of-the-art approach exists, it should be compared, but it
is not always feasible to include these in a given benchmark due to availability or cost.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.



34:42 A. Francis et al.

(4) Guideline B4: Be Efficient, Repeatable, and Scalable: To democratize benchmarks and promote
productive competition and collaboration among different scientists, efficient, repeatable, and
scalable benchmarks are preferable. For example, the cost to run the benchmark should not be
prohibitively expensive. While some benchmarks explicitly seek to reveal unique in-the-wild
variations, the benchmark should nevertheless be repeatable such that it can be repeated
multiple times with comparable results when scaled to a large number of trials. A good rule
of thumb is at least 30 samples for real robot trials, but this number can be determined in a
more principled statistical way from data if means and variances are available.

(5) Guideline B5: Ground Human Evaluations in Human Data: At this point, many researchers
agree that we do not have a good enough model of how humans react to robots to predict how
they will react from other observables. Therefore, many researchers propose benchmarks
should measure socialness based on human evaluations. An alternative approach is to use a
learnedmodel to predict human perception of the socialness of robot behaviors using a dataset
of labeled examples; some researchers argue this provides a more validated metric than an
ad hoc social score; other researchers argue the context that makes these learned metrics can
be lost if used in other scenarios. Nonetheless, learned metrics could offer repeatable and
scalable approximations of human responses, which could be evaluated via user studies.

(6) Guideline B6: Use Well-Validated Evaluation Instruments: Ideally, human questionnaires should
be standardized or empirically validated and should be ecologically valid for the task at hand;
validating metrics is an iterative process which involves proposing metrics, conducting stud-
ies, statistically analyzing responses, and exposing metrics to peer review in the community.
Objective metrics should also be empirically validated to ensure they measure what they
purport to measure.

To address the shortcomings of existing benchmarks against these criteria, we recommend the
following:

(1) Promote More Human Evaluation: Many benchmarks use proxies of human ratings; while
this is reasonable to enable fast evaluations, the community should encourage benchmark
developers to collect human ratings and should push for broader adoption of rating pipelines
such as SEAN-EP [159] to facilitate this collection.

(2) Standardize Social Questionnaires: While it is useful to have well-defined scenarios as in the
Social Navigation Protocol, the improvements to the questionnaires made by subsequent
work in this area should be standardized and made available to inform labeling pipelines.

(3) Standardize Quantitative Metrics: While some existing benchmarks and protocols specify
minimum quantitative metrics, SocNavBench, SEANavBench, and HuNavSim are converg-
ing on metrics similar to CrowdBot’s metrics; the community should encourage adopting a
minimum set of these metrics.

(4) Test Corner Cases on Standard Benchmarks: While social metrics are important, ensuring safe,
reliable navigation performance is also important. Navigation benchmarks such as barn
[124] or Bench-MR [61] should be used to validate traditional navigation behaviors.

Finally, it is worth noting that there are additional multi-agent benchmarks focused on gridworlds
such as Asprilo9 for logistics and mapf10 for multi-agent pathfinding which we did not discuss as
they do not focus on aspects of social behavior; however, as social navigation approaches become
integrated into multi-agent or logistically complex domains, features from these benchmarks may
also be useful for testing corner cases.

9https://asprilo.github.io/
10https://movingai.com/benchmarks/mapf.html
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Fig. 9. Illustration of various social navigation datasets. See the text and Tables 5 and 6 for details.

9 Social Navigation Datasets
In this section, we provide a deeper look at datasets with regard to the factors listed in Section 5. First,
we review desired dataset characteristics, noting that analyzing datasets requires drilling deeper
into factors such as robot hardware, sensors, and behavior authoring methods, as well as additional
factors for analysis such as data collected, dataset coverage, sampling distribution, annotations, and
privacy and fairness handling. Then we use these factors to analyze several datasets, including jrdb
[96], thor [138], Trajnet++ [78], eth/ucy [82, 119], Edinburgh Informatics Forum Pedestrian
Database (eifpd) [92], Stanford Drone Dataset (sdd) [134], Egocentric Future Localization
(efl) [118], wildtrack [24], scand [70, 71], MuSoHu [111], CrowdBot [116], DynaBARN [109],
SocNav1 [94], SocNav2 [4], SACSon [63], and sg-lstm [10], reviewing them with respect to the
criteria (Figure 9).

9.1 Expanding the Factors for Dataset Analysis
In addition to the factors listed in Section 5.1, additional aspects must be considered for datasets:

Robot Hardware Platform. As different robot morphologies might elicit different human responses,
it might be of importance to consider a larger set of robots to collect data with. Further, it might be
useful to utilize props, e.g., engaging face, human-like head, and eye appearance and movement, to
elicit stronger engagement with humans.

Sensors. In addition to robot sensors, a good practice is to record teleoperation commands, e.g.,
joystick controls, together with the data.

Robot Behavior Authoring Methods. The core of a social navigation dataset is demonstrations of
desired socially aware robot behaviors. How are these demonstrations defined (see Section 7 for a
deeper discussion of this topic). Should the robot behave as a human or as a different social agent
(see Section 3.1 for a deeper discussion on this topic). In the case of a dataset, some of the options
are as follows:

(1) Pedestrians/humans: If the definition of a social robot is to behave as a human, recordings of
moving humans/pedestrians might suffice.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.



34:44 A. Francis et al.

(2) Teleoperators: If behavior is desired that might be different from human behaviors, then
data can be collected via robot teleoperation. Hence, an important principle in creating a
dataset is to have explicit and clear instructions to teleoperators on how to control the robot.
These instructions should cover the following topics:
— Is the teleoperator visible to humans?
—Where is the teleoperator positioned w.r.t. the robot?
— Instructions should ideally guarantee that the teleoperator does not affect the HRI.
—Utilize multiple teleoperators, especially for the same scenarios, to encourage diversity in
the data.

Data Collected. When it comes to dataset creation one of the major questions is for what social
scenarios does one collect data. Therefore, the guidelines in Section 7 apply here. Note that for
datasets in the wild, there is limited ability to control the scenarios. On the one side, one can opt
for a completely unconstrained collection in a given environment, e.g., building, city, or area. On
the other side, one can target specific events/activities, e.g., busy areas around campus, campus
cafeteria, boardwalk crowds.

An important guideline is to define the scope of the dataset such that the available dataset resources
(hours of collection) are sufficient to collect data that thoroughly explores this scope. The scope should
be broad enough to present interesting challenges for the community to study. Therefore, it is
desirable to make the dataset scope as broad as possible.

At the same time, one needs sufficient data for the dataset to be useful. More concretely, each
scenario within the dataset scope should be well sampled in the dataset. This can help ensure that
methods developed on the dataset can be deployed in the real world within the scope of the dataset,
as they are less likely to encounter out-of-distribution scenarios.

Annotations. A question specific to a dataset is the annotations generated after the data has been
collected. When it comes to social navigation, there aren’t existing taxonomies of human–robot
or human–human interactions. Existing computer vision datasets and benchmarks for activity
recognition can provide a good starting point, e.g., ActivityNet [17].

Another consideration is the granularity of annotation. When it comes to activities, one can
annotate whole navigation episodes with global labels, or segments within these episodes. Similarly,
for human tracks, one can annotate tracks only, tracks with bounding boxes, skeletal tracking and
gaze, and so on.

Privacy and Fairness. As social navigation datasets contain humans, privacy is an important
concern. Decisions must be made on whether to anonymize humans and how to comply with
privacy protection regulations.

9.2 Existing Social Navigation Datasets
In this section, we review some of the existing datasets in the context of our social navigation
characteristics. These are presented in Tables 5 and 6. We review the following datasets.

jrdb [96] is a multi-modal dataset containing stereo 360 RGB video, 3D lidar scans, audio, and
wheel encoder measurements from both indoor and outdoor environments. It provides annotations
for human tracking and detection along with a benchmark and metrics to compare different
algorithms.

thor [138] is a public dataset providing motion trajectories of robots and humans in a range of
curated scenarios of humans visiting and inspecting areas or carrying objects.

scand [70, 71] is a public dataset providing socially compliant navigation demonstrations
recorded via teleoperating two different mobile robots in a socially compliant manner by human
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Table 5. Characteristics of Existing Social Navigation Datasets, Part I

Bench-
mark
Dataset

THOR SCAND ETH/UCY Trajnet++ EIFPD SocNav1 SocNav2 SDD

Dataset
context
and scope

Three pre-
defined human–
robot social
role-play activi-
ties.

Socially
compliant
navigation
in-the-wid

Human
trajectories
recorded
from a bird’s
eye view
vantage
point

Human
trajectories
recorded
from a bird’s
eye view
vantage
point

Human
trajectories
recorded
from a bird’s
eye view
vantage
point

Scenarios with
interactions
labeled with a
social score

Short se-
quences with
interactions
labeled with
social and
holistic scores

Human trajec-
tories recorded
from a bird’s
eye view van-
tage point us-
ing a drone

Environ-
ment

Curated indoor
environment:
two rooms
with arranged
furniture and
motion caption
system

Indoor and
outdoor
campus-
scale envi-
ronment

Outdoor,
fixed envi-
ronment

Indoor and
outdoor,
fixed envi-
ronment

Outdoor,
fixed envi-
ronment

Indoor, ab-
stract

Indoor, ab-
stract

Outdoor en-
vironment,
focusing on
diverse social
navigation
scenarios

Data
collected

60 minutes of
motion tracking
across 600 hu-
man trajectories

522 minutes,
consisting
of 138 tra-
jectories of
teleopera-
tion data
from four
demonstra-
tors

Bird’s eye
view frames,
with anno-
tated human
trajectories
across time
on five
scenes

>200K
human
trajecto-
ries across
dozens type
scenes with
high-density
crowds

Bird’s eye
view frames,
w/ anno-
tated human
trajectories
across time

9,280 static
scenario de-
scriptions
with social
scores

53,600 dy-
namic sce-
nario descrip-
tions with
social and all-
encompassing
scores

Bird’s eye
view frames
w/ anno-
tations of
pedestrians,
bikes, cars,
and so on in
100 scenes w/
annotations of
social interac-
tions

Scenarios Visiting areas,
carrying boxes,
inspecting tar-
gets

Goal-
oriented
social navi-
gation

Pedestrian
navigation

Pedestrian
navigation

Pedestrian
navigation

Evaluating
robot distur-
bance

Evaluating
robot trajecto-
ries

Real-world
navigation
with social
interactions

Robot
platform

Linde CitiTruck
robot (W 1.56 m
x L 0.55x x H
1.17 m)

Boston dy-
namic spot,
ClearPath
Jackal

N/A N/A N/A Turtlebot-
sized robot

Turtlebot-
sized robot

3DR solo
drone

Robot
behavior

Programmed
to follow a
pre-defined path
in a socially un-
aware manner

Human tele-
operation
in a socially
compliant
manner

N/A N/A N/A Static place-
ment

Teleoperation
and policy

N/A

Human
behavior

Follow a pre-
defined path,
and solving
tasks in pres-
ence of other
humans

Demon-
strators
teleoperate
robot in
open en-
vironment
with other
humans

Open world
navigation

Open world
navigation

Open world
navigation

Static place-
ment

Randomized
simulated
trajectories

Performing
navigation
activities such
as walking,
driving, and
biking in a
socially com-
pliant manner

Sensors Stationary
Velodyne 3D
LiDAR, Qual-
isys Oqus 7+
motion tracking
system, Tobii
Pro Glasses for
gaze tracking

Velodyne
3D LiDAR,
Azure RGB,
Odometry,
Joystick

Stationary
RGB camera
overlooking
pedestrians

Stationary
RGB camera
overlooking
pedestrians

Camera fixed
overhead 23
meters from
the floor

Overhead
view of robots
and humans

Robot and
human poses,
with 53,600
short videos

RGB camera

Tasks and
metrics

N/A N/A Human
trajectory
prediction

Human
trajectory
prediction

Human
trajectory
prediction

Acceptability
of robot dis-
turbance of
humans

Acceptability
of robot move-
ment around
humans

Social activity
recognition,
planning and
trajectory
prediction

demonstrators. The objective behind the scand dataset is to study the social navigation behavior
of robots in the presence of human crowds. Similar to scand, MuSohu [111] includes 3D lidar
scans, RGBD camera images, 360°camera images, IMU data, and ambient sound collected from
a sensor suite mounted on a helmet worn by humans walking around public spaces (instead of
on a teleoperated robot), from which social robot navigation can be learned. This allows social
human navigation data to be collected in the wild with a low setup cost, making MuSoHu easily
extendable.

ACM Transactions on Human-Robot Interaction, Vol. 14, No. 2, Article 34. Publication date: February 2025.



34:46 A. Francis et al.

Table 6. Characteristics of Existing Social Navigation Datasets, Part II

Bench-
mark
Dataset

EFL LCAS WILD-
TRACK

JRDB CrowdBot Dyna-
BARN

SACSoN SG-LSTM

Dataset
context
and scope

Human tra-
jectories
recorded from
human per-
spective

Online
human de-
tection from
3D lidar
scans

Multi-camera
detection
and tracking
of moving
humans

Dataset of social
interactions in in-
door and outdoor
envs. for solving
perceptual tasks

Outdoor
pedestrian
tracking
around a
personal
mobility
robot

Diverse set
of moving
agent sce-
narios

Autonomous
policy inter-
acting with
humans.

Curated
interaction,
movements,
and for-
mation of
pedestrian
groups

Environ-
ment

Outdoor
scenes such as
parks, malls,
and a univer-
sity campus

Outdoor en-
vironment

Outdoor envi-
ronment

Indoor and out-
door environment

Crowded
outdoor
scenes

Indoor, ab-
stract

Indoor envi-
ronment

Outdoor uni-
versity cam-
pus environ-
ment

Data
collected

RGBD frames
recorded from
an egocentric
perspective

49 minutes
of 3D lidar
scans

Multi-camera
synchronized
frames at
10fps

60,000 annotated
frames of humans,
recorded from an
egocentric robot
view

250K frames
/ 200 minutes
from an ego-
centric POV

Moving
polynomial
agent sce-
narios

75 hours of
visual naviga-
tion with 4,000
HRIs collected
from robot
POV

Color and
depth
frames,
pedestrian
and group
bounding
boxes

Scenarios Egocentric
real-world
navigation

Real-world
navigation in
crowded en-
vironments

Third-person
view open-
world pedes-
trian nav-
igation in
crowded envi-
ronments

Navigation in
a campus-scale
crowded environ-
ment

Real-world
navigation
in a crowded
outdoor
environment

Multiple
moving
agents

Real-world
navigation
in a crowded
indoor envi-
ronment

Paths, green
spaces, study
spaces, cafes,
gatherings,
weather
events

Robot
platform

N/A Pioneer 3-AT
mobile robot

N/A JackRabbot mo-
bile manipulator

Qolo per-
sonal mobil-
ity robot

N/A iRobot
Roomba

GO1 Edu ro-
bot

Robot
behavior

N/A Human tele-
operation

N/A Teleoperated Both shared-
control and
reactive con-
trol

N/A Policy-
controlled

Unobtrusive
data collec-
tion

Human
behavior

Socially
compliant
navigation
in the open
world

Open-world
navigation

Open-world
navigation

Open-world navi-
gation

Open-world
navigation

Navigation
among
moving
obstacles

Open-world
navigation

Many types
of pedestrian
groups

Sensors GoPro Hero 3
stereo cameras
with 100mm
baseline

Velodyne
VLP-16 3D
LiDAR

three GoPro
Hero 4 and
four GoPro
Hero 3

RGBD, fisheye
and 360 RGB cam-
eras, Velodyne
and Sick LiDARs,
microphone,
wheel encoders

Point clouds,
RGBD, peo-
ple trackers,
pose, contact
forces

N/A Spherical
RGBD, fish-
eye RGB, 2D
LIDAR, odom-
etry, bumper

RGB-D cam-
eras

Task and
metrics

Trajectory
prediction

Online
human de-
tection and
tracking

Trajectory
prediction,
person track-
ing, and re-
identification

Benchmark and
metrics for 2D
and 3D Person
detection and
tracking

Benchmark
for crowd
navigation

Dataset of
scenarios
for bench-
marking
dynamic
navigation

Learning
dataset of
autonomous
policy inter-
acting with
humans

Group size,
walking
speeds, prox-
imity, co-
hesiveness,
interactions

Also like scand, lcas [172] is a public dataset containing 3D lidar scans collected using a mobile
robot teleoperated in heavily crowded environments. Unlike scand, the robot is not necessarily
teleoperated in a socially compliant manner. The focus of lcas is to solve perception-related
challenges in social navigation, such as online human detection.

The eth/ucy [82, 119] dataset consists of human trajectories recorded in public spaces from a
bird’s eye view vantage point using an RGB camera. The trajectories are extracted by tracking
humans from the bird’s eye view images. The motivation behind the eth/ucy dataset is to provide
real-world trajectories of humans navigating among other humans in the scene so one can replicate-
by-copying such trajectories in a simulator. Trajectories from the eth/ucy dataset can be used to
simulate a diverse set of realistic social scenarios. Pellegrini et al. [119] propose conditioning the
predicted future trajectory also on scene knowledge and social interactions among agents.
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The Trajnet++ [78] dataset is composed of several existing datasets such as eth/ucy [82, 119],
CFF crowd dataset [1] with other synthetic data generated with ORCA [162]. Kothari et al. [78]
have shared a benchmark and challenge focusing on agent–agent scenarios. They provide a proper
sampling of trajectories and a unified extensive evaluation system to test the gathered methods for
a fair comparison.

The eifpd [92] is again similar to eth/ucy, while providing a much higher number of humans
captured in the dataset, the camera is fixed overhead roughly about 23 meters from the floor.
Humans are detected by processing this bird’s eye view image from the scene and tracking them in
the scene.

sdd [134] is similar to eth/ucy since it also provides a bird’s eye view frame, recorded using a
drone (unlike eth/ucy that uses a statically mounted camera). Compared to eth/ucy, the unique
selling point of this dataset is large-scale images and videos of diverse scenarios including bicyclists,
skateboarders, cars, buses, and golf carts navigating in the real world.

efl [118] provides RGBD sequences of frames from the perspective of a human in various indoor
and outdoor scenes such as parks, malls, and a campus, with various activities such as walking,
shopping, and social interaction. efl’s focus is human trajectory prediction in novel scenes.

wildtrack [24] is similar to eth/ucy. A GoPro camera is mounted in an outdoor environment
scene consisting of crowds of people walking around. This dataset focuses on person detection in
the presence of severe obstacles such as other humans and static obstacles in the scene.

The CrowdBot [116] consists of egocentric RGBD and point-cloud data from a Qolo robot [117],
[54] captured in autonomous and teleoperated modes in outdoor scenes.

Several datasets present synthetic trajectories for benchmark comparison. SocNav1 [94] and
SocNav2 [4] are datasets of human-labeled simulated HRIs used for both benchmarking algo-
rithms and as training datasets for learning algorithms. DynaBARN [109] includes 300 synthetic
environments with agents with different motion profiles.

The SACSoN [63] dataset is a collection of egocentric RGB, RGBD, LIDAR, odometry, and bumper
data from a policy-controlled iRobot Roomba navigating autonomously under policy control in
indoor human environments. The dataset was created by a scalable system wrapping the policy
control with a help-and-rescue module enabling long-term data collection, resulting in 75 hours
of data and 58 kilometers of interaction with over 4,000 individual HRIs. The dataset supported a
continual-learning architecture which showed the ability to learn from collected data. Interestingly,
the experimenters collected an “interaction-rich” subset of data in which the robot was encouraged
to drive closer to humans—then negated this objective and used these data to train a socially
compliant policy.

The sg-lstm [10] dataset is a curated dataset designed to provide insight into pedestrian behavior
collected on Purdue University’s West Lafayette, Indiana campus using a GO1 Edu robot by Unitree
Robotics navigating unobtrusively among pedestrians. SG-LSTM focuses on the interactions,
movements, and group formations of pedestrians in a variety of scenarios including campus
thoroughfares, gatherings, dining and study areas, green spaces, and inclement weather events.

9.3 Guidelines for Datasets
Guideline D1: Make Datasets as Broad as Possible. This will ensure the dataset is useful to the
community and will ensure investment in the data collection is well spent.

Guideline D2: Scope Datasets Based on Resources. Ensure the available dataset resources are
sufficient to collect data that thoroughly explore the dataset scope.

Guideline D3: Ensure Each Scenario Is Well-Sampled. This ensures that methods trained on the
dataset do not encounter out-of-distribution scenarios and the dataset is representative.
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Guideline D4: Use Robots If Robot Behavior Is Desired. While datasets of pedestrians are useful, if
robots are expected to behave differently than people, recording actual robot behavior rather than
just pedestrians is desirable.

Guideline D5: Use Diverse Robot Platforms: Different robot morphologies may elicit different
human responses, so if feasible datasets should use more than one robot morphology.

Guideline D6: Record Behavior Generation Commands. In addition to normal robot sensors, tele-
operation commands should be recorded if robots are human-driven, or policy actions should be
recorded if the behavior is authored.

Guideline D7: Collect Annotations Systematically. While standards for social navigation annotation
are still being developed, formalizing data collection and modeling it on existing benchmarks in
other fields can help. Data should be well labeled: methods used for generating human and robot
behavior and collecting labels should be specified.

Guideline D8: Consider Privacy Issues Early. The collection of data involving humans involves
privacy, policy, legal and moral issues. Considering these issues early can ensure that the dataset
does not face legal challenges.

10 Simulation-Based Evaluation
The fundamental requirement for a social navigation simulator is the ability to simulate two agents
at one time in a social encounter—without that, it’s just traditional navigation. Beyond this core
requirement, social navigation simulators span the gamut from supporting crowds of simplified
agents that test dynamic navigation algorithms to simulators that recreate human appearances,
footsteps, behavioral diversity, and environmental interactivity. Most benchmarks discussed in
Section 8 rely on a simulator to make benchmarking efficient, repeatable, and scalable.

In this section, we expand the social navigation factors particular to simulators, review existing
simulators including CrowdBot, CrowdNav, DynaBarn, gym-collision-avoidance, HuNavSim,
iGibson, InHuS, IMHuS, MengeROS, PedSimROS, SEAN 2.0, SocialGym 2.0, and SocNavBench,
analyze the properties of these simulators and how they may be improved. We then we attempt to
find a common ground between simulators and benchmarks for social navigation by proposing
a unified API in order to compute metrics along a single code path, including discussions of its
high-level requirements, implementation of the high-level API, and implementation efforts in
representative simulation environments. We conclude with guidelines for simulator usage and
development.

10.1 Expanding the Factors for Simulator Analysis
In addition to the factors listed in Section 5.1, additional aspects must be considered for simulators,
including:

Abstraction Level. Some social simulations model large-scale crowds and do not attempt to model
humans or robots in detail. For our purposes here and in Table 7, we discuss only simulations that
are at least capable of modeling individual HRIs.

Simulation Focus. Similar to the notion of context, social simulations can be targeted at large-scale
crowd simulation, social navigation interaction between humans and robots, or more narrowly
focused on dynamic obstacle avoidance.

Simulation Platform. Some social simulations are standalone codebases; others are built atop of
existing simulators such as Gazebo or MORSE.

Agent Representation. Some simulations represent only one kind of interacting agent (generally,
presumed to be all humans or all robots); others represent robots and pedestrians separately.
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Table 7. Characteristics of Existing Social Navigation Simulations

Sim
Name

Crowd-
Bot

Crowd-
Nav

Dyna-
BARN

gym-
collision-
avoidance

Hu-
Nav-
Sim

iGib-
son

InHuS IMHuS Menge-
ROS

Ped-
Sim-
ROS

SEAN
2.0

Social-
Gym
2.0

Soc-
Nav-
Bench

Sim
focus

Crowd
sim

Crowd
sim

Dyn.
obstacles

Collision
avoid.

Hu-
man
sim

Social
nav

Hu-
man
sim

Hu-
man
sim

Crowd
sim

Crowd
sim

Social
nav

Social
nav

Social
nav

Sim
platform

Gazebo Crowd-
Nav

Gazebo gym-
collision-
avoidance

Gazebo iGibson MORSE
and
Stage

Gazebo Menge-
ROS

Gazebo SEAN
2.0

Social-
Gym
2.0

Soc-
Nav-
Bench

Agent
repr.

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Robots Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Ped.
and
robot

Scene
repr.

Model
3D

Geom.
2D

Geom.
2D

Geom. 2D Model
3D

Scanned
mesh

Geom.
2D

Geom.
2D

Geom.
2D

Model
3D

Model
3D

Geom.
2D

Scanned
mesh

Scene
fidelity

Realist.
3D

2D Abstr.
3D

2D Abstr.
3D

Abstr.
3D

Realist.
3D

Abstr.
3D

2D Abstr.
3D

Realist.
3D

2D Realist.
3D

Phys-
ical
fidelity

Physics
model

Kine-
matic

Kine-
matic

Kine-
matic

Kine-
matic

Force
andmass

Kine-
matic

Kine-
matic

Kine-
matic

Physics
model

Physics
model

Kino-
dynamic

Kine-
matic

Robot
fidelity

Robot
dyn.

Disc Robot
shape

Disc Robot
dyn.

Robot
shape

Robot
shape

Robot
shape

Disc Robot
shape

Robot
dyn.

Kino-
dynamic

Robot
shape

Ped. sim
fidelity

UMANS Move
w/o gait

Poly-
nomials

Policy-
based

Gait and
attitude

Move
w/o gait

Gait and
attitude

Gait and
attitude

Move
w/o gait

Gait and
activity

Move
w/o gait

Move
w/o gait

Gait
and pose

Ped. viz
fidelity

De-
tail’d

Disc Cylind. Disc De-
tail’d

Detail’d De-
tail’d

De-
tail’d

Disc Sen-
sors

Detail’d Polyg. Detail’d

Ped.
reaction

UMANS ORCA Policy-
based

Policy-
based

SFM and
attitude

ORCA Re-
act and
attitude

ORCA,
attitude

SFM
and
ORCA

SFM SFM SFM Replay
only

Sim
interop

Unity
interf.

Gym ROS
bag

Gym ROS
interf.

Gym ROS
interf.

ROS
interf.

ROS
interf.

ROS
interf.

ROS
and unity

Gym,
ROS

ROS
interf.

See Section 10.1 for details.

Scene Representation. Environmental assets for simulators include 2D geometry, modeled 3D
geometry, and scanned meshes of real scenes; these scenes can represent abstract, indoor, or outdoor
environments.

Scene Visual Fidelity. Some simulations are purely 2D; others use abstracted 3D representations;
others attempt to render realistic 3D scenes with rich shaders.

Physics Simulation Fidelity. Some simulations only model the kinematics of moving agents in
static environments; others model forces and object mass or kinodynamic constraints; others
incorporate full physics models.

Robot Simulation Fidelity. Some simulations model robots as points or cylinders; others support
detailed robot morphologies or even full robot simulation.

Pedestrian Simulation Fidelity. Some simulations model human movement as point movement
controlled by a crowd algorithm; others model humans as 3D objects, and some model the human
walking gait. Some add variability based on the human’s personality or attitude.

Pedestrian Visual Fidelity. Pedestrians can be represented by 2D points, discs or polygons, 3D
cylinders, basic human meshes that don’t change shape, animated meshes with basic walking
movements, or photorealistic agents. As photorealistic is subjective, we lump all human meshes
into “detailed” for the purpose of Table 7.

Pedestrian Reactivity. Pedestrians can move on pre-recorded trajectories without reacting to
other agents, or may react using a model such as the SFM [62] or ORCA [162]. Pedestrian behavior
may be also modulated with individual attitudes, behavioral styles, or social activities specified by
higher-level modules or using techniques such as BT [33].
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Simulation Interoperability. Some simulators are standalone; others support the OpenAI Gym
API [16] or have interfaces to integrate with environments such as ROS [129].

10.2 Existing Social Navigation Simulators
A variety of social navigation simulators have been used in the literature, from simple simulators
designed to test individual algorithms to complex standalone simulators used in multiple contexts,
shown in Figure 10 and described in Table 7. These simulators include:

The CrowdBot [45] simulator supports four different robot morphologies interacting with
simulated crowds of walking humans controlled by a flexible framework called UMANS [163] built
on the Gazebo simulator [76].

CrowdNav [25] is a 2D simulator for multi-agent scenarios using ORCA to orchestrate pedestrian
discs around policy-controlled discs in simplified environments.

DynaBARN [109] is the simulator used in the DynaBARN benchmark. DynaBARN mod-
els crowds of pedestrians controlled by polynomial motion trajectories moving through sim-
ulated environments. Humans are represented by cylinders but robots are represented with full
morphologies.

gym-collision-avoidance11 is a 2D simulator for multi-agent scenarios using policy-controlled
cylinders in simplified environments. Humans and robots are not distinguished.

The HuNavSim [122] benchmark contains a simulator using SFM and BT to provide a variety of
human behaviors ranging from indifferent, surprised, curious, fearful, and aggressive. It can work
with various simulators and represents both human gait and robot morphologies.

The iGibson [83, 145] simulation environment supports navigation and manipulation tasks in
household scenes. Pedestrians are represented with moving mannequins controlled via ORCA
[89, 163] but robots are represented with full morphologies, and objects in the environment can be
moved.

InHuS [41] is a simulator for testing social navigation algorithms against a variety of human
behaviors called attitudes. It provides a general interface to ROS simulators and is currently
integrated with the MORSE and Stage simulators.

The InHuS system is extended to simulate multiple human agents with modulated behaviors.
This new system, called IMHuS [60], uses ORCA for motion planning of agents and is built atop of
Gazebo. The behaviors are modeled and controlled using a supervisor module.

MengeROS [3] is a 2D simulation designed to support very large crowds. Robots are discs, but
several pedestrian reactivity models are supported including SFM and ORCA. A ROS interface
allows this to be used with a variety of systems.

PedSimROS12 is a ROS package for pedestrian simulation based on SFM augmented with group
behaviors and social activities. PedSimROS simulates behaviors in 2D, but can integrate with 3D
simulators like Gazebo to incorporate physics models. Robot and pedestrian models are realistic
enough for point-cloud sensors but pedestrians are visually simplified.

The sean 2.0 [159, 161] simulator enables social navigation algorithms to run on simulated robots
via ROS in environments rendered in the Unity game engine; pedestrians are represented with full
gaits and environments can be detailed.

SocialGym 2.0 [65, 150] is a simulation supporting diverse robot types and human behaviors in
a 2D simulation that respects kinodynamic constraints, built atop the PettingZoo [155] multi-agent
reinforcement learning environment.

11https://github.com/mit-acl/gym-collision-avoidance
12https://github.com/srl-freiburg/pedsim_ros
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Fig. 10. Visual description of select simulators. See Section 10.2 for details.

The SocNavBench [12] benchmark contains a simulator to replay pre-recorded episodes of
human pedestrian behavior drawn from the ucy [82] and eth [119] datasets. SocNavBench
provides visually realistic pedestrians and environments as well as robot morphologies.

10.3 Analysis of Simulation Platforms
10.3.1 Simulation Focus. Each simulation platform has been designedwith a focus on a particular

problem area. Example areas of focus include crowd simulation, how a robot should deal with
dynamic obstacles or specific tasks such as social navigation or collision avoidance. Algorithms
developed in different simulators may have a unique focus area as well, which implies we should
be mindful when comparing algorithms across different simulators. For example, results from an
algorithm trained in a simulator that uses a cylindrical representation of pedestrians may not be
directly comparable to an algorithm that incorporates pedestrian gait.

We acknowledge the need for specialized simulators focusing on different problem areas. At the
same time, we believe the community could benefit from a common social navigation simulator or
a common API for multiple simulators. This common interface would provide access to a shared
set of features that span focus areas. A common simulator or common API would enable training
and evaluation across different approaches and promote the reuse of features from simulators that
are focused on different areas.

10.3.2 Common Platforms. Many of the simulators listed in Table 7 have shared properties. For
example, several simulators use Unity, ROS, or Gazebo as an underlying technology; simulators
that use the same type of scene representations could share these representations; and methods of
pedestrian reactivity could also be shared across simulators.
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10.3.3 Pedestrian Reactivity. How pedestrians react to other nearby agents is an important
factor to consider because the actions of simulated pedestrians directly influence both the training
and evaluation of social navigation policies. Ideally, each simulated pedestrian would act in a
manner identical to how a real-world pedestrian would act. Real-world pedestrian behavior can be
observed by recording real-world pedestrian trajectories and playing them back in a simulator.
However, there are two downsides to this approach. First, some fidelity of human motion is lost
in the recording and playback process, for example, it is typical to capture motion only along the
ground plane and not incorporate the body pose [82, 119]. Second, because the position of each
pedestrian is determined by a pre-recorded trajectory, pedestrians cannot react to changes in the
simulation. As soon as some element of the simulation deviates from the original data, such as the
robot changing course, pedestrian motion is no longer realistic.

Motion models for pedestrians such as SFM [62] and ORCA [162] enable them to move in
reaction to changes in the environment. While no model of human motion is perfect, the modeling
of reactive agents in simulation allows researchers to explore how changes made to the environment
by different robot policies affect task performance.

Pedestrian motion and reactivity play a critical role in the study of social navigation [25, 98].
The two imperfect solutions we have discussed indicate an opportunity for collaboration with the
community to develop better alternatives.

10.3.4 Multi-Agent Policies. In the previous section, we explored various approaches to model
pedestrian motion, including the use of SFM or ORCA, as well as playback of recorded trajectory
data. However, in many real-world scenarios, the policies of agents are unknown and must be
learned simultaneously.The field of robotics literature extensively covers navigation among dynamic
obstacles, and there has been significant progress in multi-agent reinforcement learning [26],
which has enabled the development of socially aware behavior in robots operating in constrained
environments.

10.3.5 Environments. The scenario plays a crucial role in social navigation. Social navigation is
not commonly observed in open environments; rather, it predominantly occurs in geometrically
constrained or highly dense scenarios. Indoor spaces such as corridors, hallways, and dense areas
like malls or airports are typical examples of such environments. These locations share similarities
in terms of their physical characteristics. Thus, the simulators discussed thus far incorporate models
that capture various aspects of such environments.

10.3.6 Metrics. Simulation can be a cost-effective alternative to the real world when training
and evaluating robot control policies, which can in turn promotes scalability and reproducibility.
The ability to compute metrics in a fair and comparable way, across robot control algorithms and
simulators, is crucial to understanding the state of the field and making progress. Running trials and
computing metrics under the same initial conditions in the real world is challenging. Simulation,
however, allows the calculation of analytical metrics using ground-truth data, which is provided by
the simulator, under common initial conditions when evaluating different algorithms. Moreover,
learned metrics can be easily computed in a similar fashion and subjective metrics, which are based
on human feedback, can be collected as well [94, 109, 160].

10.4 Toward a Unified API for Social Navigation Simulation
As discussed in Section 8, many benchmarks have been created using a variety of simulators to
evaluate different aspects of social navigation. However, these benchmarks lack a unified standard
for collecting metrics, making comparisons between benchmarks difficult and fragmenting the
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Fig. 11. Proposed social navigation simulation metrics API. A wide diversity of simulators and robot platforms
exist, many of them supporting one or more platform APIs such as OpenAPI Gym or ROS. We propose to
define a unified API that specifies the inputs needed to generate our recommended social navigation metrics,
specified as either Gym observations or ROS messages. A unified metrics API with implementations for Gym
and ROS will output a single output representation, enabling post-processing tools to generate visualizations,
analytics, and logging with uniform code. To take advantage of these tools, simulator, and robot developers
only need to contribute bridge code to output the required Gym or ROS data; dataset developers only need
to output the single output representation.

community. While different benchmarks and simulators often have divergent emphases, neverthe-
less, we argue many common factors could be captured by a single high-level API, which would
reduce fragmentation by easing comparisons.

Therefore, we propose a high-level API to calculate social navigation metrics that could be shared
between simulators, enabling easier comparison of data collected from benchmarks built from those
simulators. For broad adoption, we argue this simulation metrics API should be easy to use with a
variety of simulators, real robots, and datasets, either natively or with easy-to-develop bridge code.
To facilitate this interoperation, the API will specify both the data that it needs to compute metrics
as well as implementations in the ROS and the OpenAI Gym API. These implementations will
compute the metrics in Table 1 in a consistent way using common library code. While simulators
often have very different code structures and philosophies, the proposed high-level API aims to
help unify disparate efforts by defining a common set of data required to compute typical social
navigation metrics, common library code, and a common data output format. This will make data
from all API-compatible simulators and datasets available to use in shared analysis and visualization
tools, which can be implemented in the future.

Figure 11 illustrates the flow of data through the proposed API. Next, we outline the API’s design
and our preliminary work on implementing it for common simulators.

10.4.1 Design of the High-Level Simulator Metric API. To enable the calculation of the metrics
recommended in Table 1 from a variety of real robots, simulators, and datasets, the simulation
metric API must specify its expected input data, including the robots under test, human pedestrians
and other agents, and static and dynamic obstacles in the environment. The metrics API will enable
the development of common downstream tools, but to make it broadly useful to the community it
should also clearly its output format, as well as provide mechanisms for extensibility to support
novel use cases as they develop.
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— Input Specification: To compute the desired metrics, the API requires specific data from robots,
simulators, or datasets. Specifying these data requires both the format needed for specific
implementations, such as ROS message or OpenAI Gym info structures, as well as the content
needed for metrics, including human pedestrians and other agents, the trajectories of robots
under test, and static and dynamic obstacles in the environment.
–Pedestrian Data: Simulators represent agents such as pedestrians or other robots in different
ways. Typical data points include trajectories, teleoperation commands, current goals, and
collective data about multiple agents, such as crowd flow. To compute many desired metrics,
the proposed API requires at a minimum a pose for each agent over each timestep.

–Robot Data: For the robot (or other agent, such as simulated pedestrian) under test the
API needs not just pose but what the robots observed, what actions they performed, and
what trajectories resulted—regardless of whether robots are guided by recorded trajectories,
teleoperation by humans, or control policies.

–Obstacle Data: The API needs information about the geometry of the physical environment
to calculate certain metrics, such as collisions or the safety of an agent’s behavior; obstacle
data includes static (wall geometry) and dynamic (doors, chairs) components.

—Metric Computation: The API will compute a variety of metrics listed in Table 1, including step-
wise and task/episode level metrics as discussed in Section 6. Ideally, this metric computation
should be done by standardized libraries so metrics are computed according to common
definitions. This library for computing metrics should be extensible by the community, as
different metrics are important to different researchers.

—Output Specification: The API should have a well-defined output specification so downstream
tools can parse data from any system with a compatible format, facilitating the integration of
datasets like those in Section 9, even if they cannot readily be replayed in simulators.

—Downstream Tools: This common output data format output will allow downstream tools to
generate analyses and visualizations in a consistent way, as well as enable other data-driven
applications to use data from API-compatible robots, simulators, and datasets. This could
enable researchers to not only evaluate their systems in a common way but also analyze,
visualize, and train data-driven systems on a variety of data from different sources with
minimal feature engineering effort.

10.4.2 Implementation of Social Navigation API. To enable the broad usage of this API, we are
developing an open-source implementation at https://github.com/SocialNav/SocialNavAPI. This
reference implementation will include:

(1) A JSON schema specification for the data input format, along with implementations that
generate these data for ROS and for GymCollisionAvoidance simulator.

(2) Reference implementations of the metrics in C++ and Python, packaged as libraries so
different groups can reuse the same implementation to get comparable results.

(3) A JSON schema for the output format, with examples generating output data for ROS and
OpenAI Gym.

To use the proposed API, researchers must implement bridge code that translates data from their
robots, simulators, or datasets into a format the API can consume. To make implementing bridge
code easier, we will provide implementations for GymCollisionAvoidance and ROS which can be
adapted for other systems, as shown in Figure 11. We are also working with the developers of
SEAN 2.0, SocialGym, and DynaBarn to develop bridge code for these systems as well.
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10.5 Guidelines for Simulators
Each simulator has its own purpose and scope, but, based on our analysis, we feel that a number of
guidelines can be made for social navigation simulators which are intended to have broad use. First
among these are guidelines which make it easier for simulators to interoperate:

Guideline S1: Use Standardized APIs. When possible, simulators should use standard APIs that
enable approaches to be tested across different simulators.

Guideline S2: Support StandardMetrics. Simulators should provide quantitativemetrics on a variety
of dimensions of interest to enable different researchers to compare results—ideally, leveraging
standard APIs so that metrics are computed in consistent ways, as suggested in Section 10.4.

Guideline S3: Support Extensibility. Regardless of the features a simulator supports, it is impossible
to satisfy every use case. Novel research may require specific features that cannot be anticipated.
Therefore, simulators should be designed with extensibility in mind, specifically enabling expert
users to incorporate new functionality within the existing framework.

Next, we suggest guidelines to make simulators participate in the lifecycle of social navigation
research:

Guideline S4: Support Dataset Generation. Simulators should make it easy to create datasets by
systematically recording data from large-scale simulated runs.

Guideline S5: Support Benchmark Creation. Simulators should provide an API to create tasks and
scenarios and to combine them with metrics and baselines to create a social navigation benchmark.

Guideline S6: Support Human Labeling. Simulators should make it easy to collect human labels of
the acceptability or socialness of simulated episodes.

In addition, to support the increasing sophistication of social navigation scenarios and policies,
we suggest guidelines for supporting increased visual and behavioral fidelity:

Guideline S7: Support Common Robot Morphologies. Simulators should provide instantiations of
common robot morphologies to enable easy comparisons.

Guideline S8: Support Detailed Pedestrians. Where possible, simulators should support detailed
pedestrian simulations to enable visual policies to react to walking pedestrian gaits. Ideally, this
would extend to full visual realism of backgrounds as well, as well as replay of realistic pedestrians.

Guideline S9: Provide Options for Behavior Authoring. Simulators should provide ways to support
behavior authoring, including playback of pedestrian recording, standard simulated models such as
ORCA, and controls by custom policies. Supporting behavioral diversity in the generated policies
is also important to capture the range of pedestrian behavior.

Finally, it is important to validate the simulation setup against its intended usage. Simulators
should be periodically validated and refined to improve the realism and scope of the social navigation
behaviors that they support.

11 Conclusions
Social robot navigation is critical to the success of mobile robots in human environments, but
challenging because it combines all the problems of traditional robot navigation with the twin
challenges of understanding how a robot can and should operate in concert withmoving humans and
understanding how humans react to this participation. In this article, we have outlined principles
for social robot navigation and discussed guidelines for how these principles can be properly
evaluated in scenarios, benchmarks, datasets, and simulators.

We defined a socially navigating robot as a robot that acts and interacts with humans or other
robots, achieving its navigation goals while modifying its behavior to enable the other agents
to better achieve theirs, and identified the key aspects needed to achieve this as safety, comfort,
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legibility, politeness, social competency, understanding other agents, proactivity, and responding
appropriately to context.

Building on this foundation, we reviewed the methodology of social navigation research and
defined a taxonomy of factors used to describe social navigation metrics, scenarios, benchmarks,
datasets, and simulators. Based on a review of existing work, we proposed a list of criteria for
good benchmarking, including evaluating social behavior, including quantitative metrics, providing
baselines for comparison, being efficient, repeatable, and scalable, using human evaluations on
human data, and using well-validated evaluation instruments.

Figure 1 summarizes these guidelines to help researchers analyze their own research efforts
and make good choices for benchmarking social robot navigation. We hope this framework for
understanding social robot navigation will promote clearer benchmarking and faster progress in
this field, and to promote this, we also proposed a common API for social navigation metrics to
improve the ease of comparison.
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