
Towards Autonomic Computing: Adaptive Network Routing and Scheduling

Shimon Whiteson and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

1 University Station, C0500
Austin, TX 78712-0233�

shimon,pstone � @cs.utexas.edu
http://www.cs.utexas.edu/˜{shimon,pstone}

Track: Emerging Application
Application Domain: Network Routing and Scheduling
AI Techniques: Q-routing
Application Status: Research Prototype

Abstract

Computer systems are rapidly becoming so complex that
maintaining them with human support staffs will be pro-
hibitively expensive and inefficient. In response, visionaries
have begun proposing that computer systems be imbued with
the ability to configure themselves, diagnose failures, and ul-
timately repair themselves in response to these failures. How-
ever, despite convincing arguments that such a shift would
be desirable, as of yet there has been little concrete progress
made towards this goal. We view these problems as funda-
mentally machine learning challenges. Hence, this article
presents a new network simulator designed to study the appli-
cation of machine learning methods from a system-wide per-
spective. We also introduce learning-based methods for ad-
dressing the problems of packet routing and CPU scheduling
in the networks we simulate. Our experimental results ver-
ify that methods using machine learning outperform heuristic
and hand-coded approaches on an example network designed
to capture many of the complexities that exist in real systems.

Introduction
Computer systems are rapidly becoming—indeed some
would say have already become—so complex that maintain-
ing them with human support staffs will be prohibitively ex-
pensive and inefficient. Large enterprise systems, such as
those found in medium-sized to large companies, are prime
examples of this phenomenon. Nonetheless, most computer
systems today are still built to rely on static configurations
and can only be installed, configured, and re-configured by
human experts.

In response, visionaries have begun proposing that com-
puter systems be imbued with the ability to configure them-
selves, diagnose failures, and ultimately repair themselves
in response to these failures. The resulting shift in com-
putational paradigm has been called by different names, in-
cluding cognitive systems (Brachman 2002) and autonomic

Copyright c
�

2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

computing (Kephart & Chess 2003), but the underlying mo-
tivation and goal is remarkably similar.

However, despite convincing arguments that such a shift
would be desirable, as of yet there has been little concrete
progress made towards this goal. There has been prelimi-
nary progress on adaptive system components such as net-
work routing (Boyan & Littman 1994; Caro & Dorigo 1998;
Clark et al. 2003; Itao, Suda, & Aoyama 2001). But to our
knowledge, there has not been any previous work on improv-
ing system performance from a system-wide perspective.

Our long-term goal is to enable large-scale integrated
computer systems, consisting of tens to hundreds of ma-
chines with varying functionality, to be delivered in a default
configuration and then incrementally tune themselves to the
needs of a particular enterprise based on observed usage pat-
terns. In addition, the systems should be able to adapt to
changes in connectivity due to system failures and/or com-
ponent upgrades.

We view these goals as fundamentally machine learning
challenges. For entire systems to be able to self-configure,
self-diagnose failures, and repair themselves, there will need
to be machine learning components at multiple levels, in-
cluding the operating systems, databases, and networking
modules. Furthermore, individual computers and local sys-
tems will need to adapt their interactions with remote sys-
tems whose connectivity and computing capabilities may
vary unpredictably.

This article introduces a simulator designed to facilitate
the study of machine learning in enterprise systems and re-
ports on our initial experiments in this domain. These ex-
periments underscore key complexities that arise when op-
timizing routing and scheduling in computer networks. We
present machine learning approaches to address these chal-
lenges.

The remainder of this article is organized as follows. The
next section provides background on our network simulator
and the particular network we use in all our experiments.
After that, we detail our methods for optimizing routing and
scheduling and present the results of our experiments eval-
uating these methods. Finally, we discuss the implications
of these results and highlight some opportunities for future
work.

Background
This section introduces the simulator that we use as the sub-
strate system for our research as well as a detailed example
network that is the setting for the experiments presented in
this article.

The Simulator
To pursue our research goals, we need a high-level simula-
tor that is capable of modeling the relevant types of interac-
tions among the many different components of a computer
system. While detailed simulators exist for individual sys-
tem components, such as networks, databases, etc., we were
unable to locate any simulator that models system-wide in-
teractions. Therefore, we have designed and implemented a
system that simulates the way a computer network processes
user requests from a high-level perspective.

The simulator represents a computer network as a graph:
nodes represent machines or users and links represent the
communication channels between them. Users create jobs
that travel from machine to machine along links until all of
their steps are completed. When a job is completed, it is as-
signed a score according to a given utility function, which
depends on how much time the job took to complete. The
utility function may vary depending on the type of job or the
user who created it. The job’s score is added to the simula-
tion’s global, cumulative score, which the agents controlling
the network are trying to maximize.

The simulator includes the following components:

Nodes: A node is a component of the network that is con-
nected to other nodes via links. There are two primary
types of nodes: users and machines.

Users: Users are special nodes who create jobs and send
them to machines for processing. Once a job is com-
pleted, it is returned to the user, who computes its score.

Machines: A machine is a node that can complete portions
of a job. Each type of machine is defined by the set of
steps it knows how to complete.

Links: A link connects two nodes in the network. It is used
to transfer jobs and other packets between nodes.

Packets: A packet is a unit of information that travels be-
tween nodes along links. The most common type of
packet is a job, described below, but nodes can create
other types of packets in order to communicate with other
nodes about their status.

Jobs: A job is a series of steps that need to be completed
in a specified order. Completing these steps could require
the job to travel among several machines. A system usu-
ally has several types of jobs which differ in the list of
steps they require for completion.

Steps: A step is one component of a job. Each step can only
be carried out by a subset of machines in the network.
For example, the retrieval of information in response to a
database query must happen at a database server.

A simulation proceeds for a specified number of discrete
timesteps. At each timestep, machines can allocate their
CPU cycles towards the completion of steps on the jobs in

its possession, packets can be sent along links, and packets
can arrive at new nodes.

We believe that this simulator provides a valuable testbed
for new approaches to autonomic computing. Because its
design is very general, it can be used to represent a wide
variety of computer systems with arbitrary topology. Fur-
thermore, it is highly modular which makes it easy to insert
intelligent agents to control any aspect of the system’s be-
havior. Most importantly, the simulator captures many of the
real world problems associated with complex computer sys-
tems while retaining the simplicity that makes experimental
research feasible.

An Example Network
All of the experiments presented in this article were per-
formed on the network depicted in Figure 1. In this net-
work, the users (the CEO and Intern) can check their mail
or perform database queries via a web interface. Two load
balancers do not complete any steps but make important de-
cisions about how to route jobs. The speed associated with
each machine represents the number of CPU cycles it can ex-
ecute in one turn. Note that the web servers and mail servers
are not fully connected.

Database Load
Balancer

Mail Server #3
Speed = 25

Mail Server #1
Speed = 25

Database #2

Database #3

Speed = 40

Speed = 80

Database #1
Speed = 10

Mail Server #2
Speed = 25

Web Server #2

Web Server #3

Web Server #1
Speed = 200

Speed = 200

Speed = 200

Load Balancer
Web Server

CEO

Intern

Figure 1: The network used in our experiments; ovals rep-
resent users and rectangles represent machines; the lines be-
tween them represent links that allow communication of jobs
or other packets. The speed associated with each machine
represents the number of CPU cycles it can execute in one
turn. Note that the web servers and mail servers are not fully
connected.

There are two types of jobs that the users create: Mail
Jobs and Database Jobs. Each Mail Job consists of the fol-
lowing three steps: 1) Web Step (work = 50), 2) Mail Step
(work = 100), and 3) Web Step (work = 50). The work as-
sociated with each step is simply the number of CPU cycles
required to complete the step. As one might expect, only
Web Servers can complete Web Steps and only Mail Servers
can complete Mail Steps. A Database Job is identical except
that its second step is a Database Step (work = 200).

In this article, we explore ways of applying machine
learning techniques to the problems of routing and schedul-
ing jobs efficiently. The network just described, although
abstract, nonetheless captures the essential difficulties posed

by such optimization problems. For example, each Database
has a different speed, which means that if the Database
Load Balancer routes packets randomly, it will overload the
slower Databases and underload the faster ones. Even if we
take machine speed into account, routing on this network is
far from trivial. Consider a Web Server that wishes to for-
ward a Mail Job to a Mail Server. Since there is no load
balancer governing the Mail Servers, the Web Server must
pick directly from among the Mail Servers to which it is con-
nected. Doing so optimally requires considering not just the
speed of each Mail Server but also how busy that server is
completing jobs sent by other Web Servers. Since the con-
nections between Web and Mail Servers are not just incom-
plete but also uneven (i.e. some Web Servers are connected
to more Mail Servers than others), determining this is not
easy. Similarly, the Web Server Load Balancer cannot con-
sider only the relative speed of a Web Server to which it is
considering routing a Mail Job. It must also consider how
much access that Web Server has to Mail Servers and how
busy those Mail Servers are.

Load Updates Each machine periodically (every five
timesteps) sends a special packet called a Load Update to
each of its neighbors. A Load Update indicates how many
jobs that machine already has in its queue. The contents of
such an update can help an intelligent router make better de-
cisions. Load updates incur network traffic overhead but are
quite useful for making routing decisions. As long as they
are not too frequent, including them as a routine occurrence
is not unrealistic.

Job Creation At each timestep, each user chooses ran-
domly between creating one or two new jobs. For each job,
it chooses randomly between a Mail Job and a Database Job.
The creation of new jobs by each user is subject to an impor-
tant restriction: each user must remain below a maximum
number of incomplete jobs (set to fifty in our experiments).
When a user is at this maximum, it does not create any new
jobs until older jobs are completed. This simple method of
generating jobs models features of real user behavior: users
tend to reduce their use of networks that are overloaded and
the creation of new jobs depends on the completion of older
ones. For example, a user typing a document on a slow ter-
minal is likely to stop typing momentarily when the number
of keystrokes not reflected on the screen becomes too great.
In addition, this demand model allows us to easily test our
methods on a network that is busy but not overloaded. Any
demand model that is not tied to the system’s capacity is
likely to either under or over utilize network resources. In
the former case, weak methods may still get good perfor-
mance since there is spare capacity (i.e. a ceiling effect).
In the latter case, even good methods will perform badly
because the available resources, regardless of how they are
allocated, are insufficient to meet demand. Our demand
model, by striking a balance between these alternatives, al-
lows us to more effectively compare methods of optimizing
the network’s performance.

Utility Functions The ultimate goal of our efforts is to im-
prove the network’s utility to its users. In the real world, that

utility is not necessarily straightforward. While it is safe
to assume that users always want their jobs completed as
quickly as possible, the value of reducing a job’s completion
time is not always the same. Furthermore, each user may
have a different importance to the system. In our network,
the utility of quickly completing the CEO’s jobs should be
higher than the utility of doing so for the intern.

In order to capture these complexities, we assign differ-
ent, non-linear utility functions, shown in Figure 2, to our
two users. Jobs created by the intern are scored according
to the following function: ���������
	���
���������� where � is the
job’s completion time. By contrast, jobs created by the CEO
are scored by the function ����������	�������� ��� . Though our ex-
periments study only this particular pair of metrics, our algo-
rithms are designed to work with arbitrary functions of com-
pletion time, so long as they are monotonically decreasing.
These metrics were selected because they are significantly
different from each other and because they are non-linear,
features which, as explained below, create the complications
that make intelligent scheduling non-trivial. The specific co-
efficients were tuned for this scenario only in the sense that
the region of interest, where one curve crosses the other, lies
in the neighborhood of the average completion time for jobs
in this network.

-300

-250

-200

-150

-100

-50

0

0 20 40 60 80 100

U
til

ity

Completion Time

Utility Functions for the CEO and Intern

Intern
CEO

Figure 2: Utility Functions for the CEO and Intern.

Method
In this section, we present our approach to developing in-
telligent routers and schedulers for networks like the one
detailed above. Due to the complications described above,
achieving good performance in such a network using fixed
algorithms and hand-coded heuristics is very difficult and
prone to inflexibility. Instead, we use reinforcement learn-
ing to develop routers and schedulers that are efficient, ro-
bust, and adaptable. The rest of this section explains the
details of our approach to these two problems.

Routing
As traditionally posed, the packet routing problem requires
a node in a network to decide to which neighboring node to

forward a given packet such that it will reach its destination
most quickly. In the network simulation described above,
each machine faces a similar but not identical problem each
time it finishes processing a job. When it is unable to com-
plete the next step required by the job, it must search among
its neighbors for machines that can complete that step (or
that can forward the job to machines that can complete it). If
more than one neighbor qualifies, the machine should make
the choice that allows the job to be completed as quickly as
possible.

In both our task and the traditional routing problem, the
router tries to minimize the travel time of a packet given
only local information about the network. However, in the
traditional problem the goal is only to get the packet from
its source to a specified destination. In our domain, this
goal is not relevant. In fact, since a job returns to its cre-
ator when it is complete, the source and destination are the
same. Instead, we want the job to travel along a path that al-
lows the appropriate machines to complete its various steps
in sequence and return to its creator in minimal time.

In this section, we present three ways of addressing this
modified routing problem: a random method, a heuristic
method, and a method, called Q-routing, based on reinforce-
ment learning.

Random Router As its name implies, the random router
forwards jobs to a machine selected randomly from the set
of contenders � . A neighboring machine is a contender if
it is capable of completing the job’s next step. If no such
machines exist, then � is the set of all neighbors who can
forward the job to a machine that can complete its next step.
In the random router, the probability that a given job will be
forwarded to a specific contender ����� is:

��� �
�
	 � 	

where
	 � 	 is the size of � . Despite its simplicity, the random

router is not without merit. For example, if all the neighbors
have the same speed and do not receive load from anywhere
else, the random router will keep the load on those neighbors
evenly balanced. Of course, it does not address any of the
complications that make routing a non-trivial problem and
hence we expect it to perform poorly in real world scenarios.

Heuristic Router Without the aid of learning techniques
or global information about the network, a heuristic router
cannot be expected to perform optimally. However, it can do
much better than the random router by exploiting the avail-
able local information, like the speed of its neighbors, to
make routing decisions. Hence, our experiments also test a
heuristic in which the likelihood of routing to a given neigh-
bor is in direct proportion to that neighbor’s speed. That is,
for each �
��� ,

��� � ��
����
� ��� �� �������

��
����
� ������� �

Hence, if there are two qualifying neighbors and one is twice
as fast as the other, a given packet will have a 2/3 probabil-
ity of going to the fast machine and a 1/3 probability of go-
ing to the slower one. This algorithm ignores both the load

these neighbors might be receiving from other machines and
the status of any machines the packet might be sent to later.
Hence, it acts as a myopic load balancer.

Q-Router Despite the distinctive features of our version
of the routing problem, techniques developed to solve the
traditional version can, with modification, be applied to the
task faced by machines in our simulation. In this article,
we adapt one such technique, called Q-routing (Boyan &
Littman 1994), to improve the performance of our network.
Q-routing is an on-line learning technique in which a rein-
forcement learning module is inserted into each node of the
network.

In Q-routing, each node � maintains a table of estimates
about the time-to-go of packets if they are routed in various
ways. Each entry "! � �$#�% � is an estimate of how much addi-
tional time a packet will take to travel from � to its ultimate
destination

�
if it is forwarded to

%
, a neighbor of � . If �

sends a packet to
%

, it will immediately get back an estimate
� for � ’s time-to-go, which is based on the values in

%
’s Q-

table:
� �'&)(+*-, �/. "0 � �$#21 �

where 3 is the set of
%

’s neighbors. With this information, �
can update its estimate of the time-to-go for packets bound
for

�
that are sent to

%
. If 4 is the time the packet spent in � ’s

queue and � is the time the packet spent traveling between �
and

%
, then the following update rule applies:

 5! � �6#2% � � � � 	87 �9 5! � �$#�% �;:<7 �=4>: � : ���
where 7 is a learning rate parameter (0.7 in our exper-
iments). In the standard terms of reinforcement learn-
ing (Sutton & Barto 1998), 4?: � represents the instantaneous
reward (cost) and � is the estimated value of the next state,%

.
By bootstrapping off the values in its neighbors’ Q-tables,

this update rule allows each node to improve its estimate
of a packet’s time-to-go without waiting for that packet to
reach its final destination. This approach is based directly on
the Q-learning method (Watkins 1989). Once reasonable Q-
values have been learned, packets can be routed efficiently
by simply consulting the appropriate entries in the Q-table
and routing to the neighbor with the lowest estimated time-
to-go for packets with the given destination.

State Representation. To make Q-routing more suitable
for our unique version of the packet routing problem, we
must change the state features on which learning is based.
Instead of simply using the job’s destination, we use three
features that indicate in what general direction the job is
headed, what machine resources it will likely tax if routed
in a particular way, and what priority it will be given by sub-
sequent schedulers:@ the type of the job,@ the type of the next step the job needs completed, and@ the user who created the job

In addition, we want a fourth state feature that allows the
router to consider how much load is already on the neigh-
bors to which it is considering forwarding a job. We could

add a state feature for every neighbor that represents the cur-
rent load on that machine. However, this would dramati-
cally increase the size of the resulting Q-table, especially
for large, highly-connected networks, and could make table-
based learning infeasible. Fortunately, almost all of those
state features are irrelevant and can be discarded. Since we
are trying to estimate a job’s time-to-go if it is routed to a
given machine, the only information that is relevant is the
load on that particular machine. Hence, we use an action-
dependent feature (Stone & Veloso 1999). As the name
implies, action-dependent features cause an agent’s state to
change as different actions are considered. In this case, our
action-dependent feature always contains the current load on
whatever neighbor we are considering routing to. The load
on all other neighbors is not included and hence the Q-table
remains very small.

Update Frequency. The original formulation of Q-routing
specifies that each time a node receives a packet it should
reply with a time-to-go estimate for that packet. However,
it is not necessarily optimal to do so every time. In fact, the
frequency at which such updates are sent represents an im-
portant trade-off. The more often a reply is sent, the more
reliable the router’s feedback will be and the more rapidly it
will train. However, if replies are sent less often, then more
network bandwidth is reserved for actual packets, instead of
being clogged with administrative updates. In our imple-
mentation, replies are sent with a 0.5 probability, which we
determined through informal experimentation to be optimal.

Action Selection. Like other techniques based on rein-
forcement learning, Q-routing needs an exploration mech-
anism to ensure that optimal policies are discovered. If the
router always selects the neighbor with the lowest time-to-
go, it may end up with a sub-optimal policy because only
the best neighbor’s estimate will ever get updated. An ex-
ploration mechanism ensures that the router will occasion-
ally select neighbors other than the current best and hence
eventually correct sub-optimalities in its policy. In our im-
plementation, we use � -greedy exploration (Sutton & Barto
1998), with � set to 0.05. In � -greedy exploration, the router
will, with probability � , select a neighbor randomly; with
probability

� 	�� it will select the currently estimated best
neighbor.

Scheduling
The routing techniques discussed above all attempt to mini-
mize the time that passes between the creation and comple-
tion of a job. However, this completion time is only indi-
rectly related to the score, which it is our goal to maximize.
The score assigned to any job is determined by the utility
function, which can be different for different types of jobs
or users. The only requirement is that the function decrease
monotonically with respect to completion time (i.e. users
never prefer their jobs to take longer).

At first, this monotonicity constraint may seem to make
the routing approach sufficient on its own: if we are min-
imizing the completion time, we must be maximizing the

score. However, this is true only in the very limited case
where all jobs have the same importance. There are two im-
portant ways that jobs can vary in importance.

Firstly, the jobs may be governed by different utility func-
tions. Suppose jobs created by the intern were scored ac-
cording to the function ������� � 	 � while jobs created by the
CEO were scored according to the function ������� � 	 �

�� .
In this case, the CEO’s jobs are vastly more important.
Clearly, a network that devotes as much of its capacity to-
wards the intern’s jobs as the CEO’s jobs will be very sub-
optimal.

Secondly, utility functions may be non-linear. Even if
all jobs are controlled by the same function, if that func-
tion is non-linear then some jobs will matter more than oth-
ers. Imagine a utility function that slopes down sharply un-
til ��� �
 and then completely flattens out. Now consider
two jobs working their way through the network, one that
was created 25 timesteps ago and one that was created 100
timesteps ago. In this scenario, the former job is much more
important than the latter. The job that has been running for
100 timesteps is a “lost cause”: it is already past the region
in which there is hope of improving its score so spending
network resources to speed up its completion would be fruit-
less. By contrast, the job that has only run for 25 timesteps
is very important: if it is possible to complete the job in less
than 50 timesteps, then every step that can be shaved off its
completion time will result in an improved score.

Hence, when jobs do not all have equal importance, min-
imizing the completion time of less important jobs can be
dramatically suboptimal because it uses network resources
that would be better reserved for more important jobs. In this
sense, the Q-routing technique explained above has a greedy
approach: it attempts to maximize the score of a given job
(by minimizing its completion time) but does not consider
how doing so may affect the score of other jobs.

In principle, this shortcoming could be addressed by re-
vising the values that the Q-router learns and bases its de-
cisions on. For example, if the Q-values represented global
utility instead of time-to-go, the router would have no in-
centive to favor the current job and could eventually learn
to route in a way that maximizes global utility, even at the
expense of a particular job’s time-to-go. However, such a
system would have the serious disadvantage of requiring
each node to have system-wide information about the con-
sequences of its actions, whereas the current system is able
to learn given only feedback from immediate neighbors.

Another alternative would be to change the router’s action
space. Currently, an action consists of routing a particular
job to some neighbor. Instead, each action could represent
a decision about how to route all the jobs currently in the
machine’s queue. While such a system would reduce the
router’s myopia, it would create a prohibitively large action
space. Given a queue of length * and a set of & neighbors,
there would be &�� possible actions!

Given these difficulties, we believe the challenges posed
by complicated utility functions are best addressed, not by
further elaborating our routers, but by coupling them with
intelligent schedulers. Schedulers determine in what order
the jobs sitting at a machine will be processed. They decide

how the machine’s CPU time will be scheduled. By deter-
mining which jobs are in most pressing need of completion
and processing them first, intelligent schedulers can maxi-
mize the network’s score even when the utility functions are
asymmetric and non-linear.

FIFO Scheduler The default scheduling algorithm used
in our simulator is the first-in first-out (FIFO) technique. In
this approach, jobs that have been waiting in the machine’s
queue the longest are always processed first. More precisely,
the scheduler chooses the next job to process by selecting
randomly from the set ��� of jobs that have been waiting the
longest. If �+(& � ��� � is the time that job � arrived at the ma-
chine and � is the set of waiting jobs, � � is determined as
follows:

� � � � � ��� 	 �+(+& � ��� ��� �+(+& � ��� � �
#
	 � � ��� �

Clearly, the FIFO algorithm does nothing to address the
complications that arise when jobs have different impor-
tance.

Priority Scheduler An alternative heuristic that does ad-
dress these concerns is a priority scheduler. This algorithm
works just like the FIFO approach except that each job is
assigned a priority. When allocating CPU time, the priority
scheduler examines only those jobs with the highest priority
and selects randomly from among the ones that have been
waiting the longest. In other words, the priority scheduler
selects jobs randomly from the following set:

� � � � � ��� 	 �+(& � ��� ��� �+(+& � ��� � ��

 � (�� � (�
% ��� ���
 � (�� � (�

% ��� � � #�	 � � ��� �
If all the utility functions are simply multiples of each

other, the priority scheduler can achieve optimal perfor-
mance by assigning jobs priorities that correspond to the
weight of their utility function. However, when the utility
functions are truly different or non-linear, the problem of
deciding which jobs deserve higher priority becomes much
more complicated and the simplistic approach of the priority
scheduler breaks down.

Insertion Scheduler To develop a more sophisticated ap-
proach, we need to formulate the problem more carefully.
Every time a new job arrives at a machine, the scheduler
must choose an ordering of all the * jobs in the queue and
select for processing the job that appears at the head of that
ordering. Of the *�� possible orderings, we want the sched-
uler to select the ordering with the highest utility, where util-
ity is the sum of the estimated scores of all the jobs in the
queue. Hence, to develop an intelligent scheduler, we need
to decide 1) how to estimate the utility of an ordering and 2)
how to efficiently select the best ordering from among the *��
contenders.

The utility of an ordering is the sum of the constituent
jobs’ scores and a given job’s score is a known function of
completion time. Thus, the problem of estimating an order-
ing’s utility reduces to estimating the completion time of all
the jobs in that ordering. A job’s completion time depends
on three factors:

1. How old the job was when it arrived at the current ma-
chine,

2. How long the job will wait in this machine’s queue given
the considered ordering, and

3. How much additional time the job will take to complete
after it leaves this machine.

The first factor is known and the second factor is easily com-
puted given the speed of the machine and a list of the jobs
preceding this one in the ordering. The third factor is not
known but can be estimated using machine learning. In fact,
the values we want to know are exactly the same as those
Q-routing learns. Hence, if the scheduler we place in each
machine is coupled with a Q-router, no additional learning is
necessary. We can look up the entry in the Q-table that cor-
responds to a job of the given type. Note that this estimate
improves over time as the Q-router learns.

Once we can estimate the completion time of any job,
we can compute the utility of any ordering. The only chal-
lenge that remains is how to efficiently select a good order-
ing from among the *�� possibilities. Clearly, enumerating
each possibility is not computationally feasible. If we treat
this task as a search problem, we could use any of a number
of optimization techniques (e.g. hill climbing, simulated an-
nealing, or genetic algorithms). However, these techniques
also require significant computational resources and the per-
formance gains offered by the orderings they discover are
unlikely to justify the CPU time they consume, since the
search needs to be performed each time a new job arrives.
Given these constraints, we propose a simple, fast heuris-
tic called the insertion scheduler. When a new job arrives,
the insertion scheduler does not consider any orderings that
are radically different from the current ordering. Instead, it
decides at what position to insert the new job into the cur-
rent ordering such that utility is maximized. Hence, it needs
to consider only * orderings. While this restriction may
prevent the insertion scheduler from discovering the opti-
mal ordering, it nonetheless allows for intelligent schedul-
ing of jobs, with only linear computational complexity, that
exploits learned estimates of completion time.

Results
To evaluate our routing and scheduling methods, we ran
a series of experiments on the example network described
above. Figure 3 shows the result of the first set of experi-
ments, in which our three routing methods — random rout-
ing, heuristic routing, and Q-routing — are each employed
in conjunction with a FIFO scheduler in simulations that run
for 20,000 timesteps. In each case, the simulation runs for
another 20,000 “warmup” steps before timestep #0 to get
the network load up to full capacity before tallying scores.
In the case of Q-routing, a random router is used during the
warmup steps; Q-routing is turned on and begins training
only at timestep #0. At timestep #10,000, a network catas-
trophe is simulated in which Web Server #1, Mail Server #1,
and Database #3 simultaneously go down and remain down
for the duration of the run. At any point in the simulation,
the score for each method represents a uniform moving aver-

age over the scores received for the last 100 completed jobs.
The scores are averaged over 25 runs.

The graph clearly indicates that routing randomly is dra-
matically suboptimal. The heuristic router, which routes in
proportion to the speed of its neighbors, performs much bet-
ter. Using a t-test, we verified that the heuristic router’s ad-
vantage is significant with 95% confidence after timestep
#1,000. The Q-routing method, whose initial policy lacks
even the primitive load balancing of the random router, starts
off as the worst performer but improves rapidly and plateaus
with a higher score than the heuristic. This difference is sig-
nificant with 95% confidence after timestep #4,000. Both
the Q-router and the heuristic router are able to respond
gracefully to the loss of machines in the middle of the simu-
lation (the reason for the heuristic router’s robustness is dis-
cussed in the following section); the Q-router maintains its
superiority afterwards. The random router, however, suffers
a major loss of performance from the sudden change in net-
work configuration.

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0 5000 10000 15000 20000

S
co

re

Timesteps

A Comparison of Three Routers

Random Router & FIFO Scheduler
Heuristic Router & FIFO Scheduler

Q-Router & FIFO Scheduler

Figure 3: A comparison of three routing methods. A net-
work catastrophe occurs at timestep #10,000.

Figure 4 shows the results of a second set of experi-
ments. These experiments are identical to the first except
that three different schedulers—the FIFO scheduler, the pri-
ority scheduler, and the insertion scheduler—are tested, all
in conjunction with our best router, the Q-router.

The FIFO scheduler, which ignores complications that
arise from the utility functions, performs relatively poorly,
while the priority and insertion schedulers fare much bet-
ter. Though the lines appear close in the graph, the inser-
tion scheduler, by capitalizing on the information learned
in each machine’s Q-table, obtains scores that are approxi-
mately 20% higher than those of the priority scheduler. A
t-test verified that these differences are significant with 95%
confidence after timestep #4,000. Since all of these runs use
Q-routing, they all recover from the network catastrophe at
timestep #10,000.

Discussion
Our experimental results indicate clearly that machine learn-
ing methods offer a significant advantage in optimizing the

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 5000 10000 15000 20000

S
co

re

Timesteps

A Comparison of Three Schedulers

Q-Router & FIFO Scheduler
Q-Router & Priority Scheduler

Q-Router & Insertion Scheduler

Figure 4: A comparison of three scheduling methods. A
network catastrophe occurs at timestep #10,000.

performance of complicated networks. Both the router and
scheduler placed in each machine benefit substantially from
the time-to-go estimates discovered through reinforcement
learning. Furthermore, the best performance is achieved
only by placing intelligent, adaptive agents at more than one
level of the system: the Q-router and the insertion scheduler
perform better together than either could apart. Hence, they
benefit from a sensible division of optimization tasks; the
router focuses on routing jobs efficiently and balancing load
throughout the network while the scheduler focuses on pri-
oritizing those jobs whose effect on the score will be most
decisive.

One of the chief advantages of the reinforcement learning
techniques we employ is that they learn on-line, while the
system is running. Unlike off-line methods, our system is
never locked in to a specific policy but can continually adapt
to changes in network topology or shifts in user demand.
The superior recovery of Q-routing after machines have
been ablated, when compared to random routing, verifies
the worth of this feature. However, Q-routing, while con-
tinuing to get the best performance, does not recover more
gracefully than the heuristic router, which uses no learning
at all. Though initially surprising, this result makes sense
after a careful consideration of the heuristic policy. Because
the heuristic router does not learn, nothing in its policy is
tuned to the current status of the network. Hence, adapting
to changes is easier. So long as the heuristic router gets up-
dated information about the state of its neighbors (which can
be provided via Load Updates without learning), its policy
remains viable. Since Q-routing’s policy depends highly on
the current configuration, it faces a greater task of adaptation
when that configuration changes. In this light, it is not sur-
prising that the heuristic router suffers little degradation in
performance after a sudden system change. Instead, it is re-
markable that our system, despite a greater burden to adapt,
is able to recover just as robustly.

Future Work
In ongoing research, we plan to investigate new ways of ap-
plying machine learning methods to further automate and
optimize networks like the one studied in this article. In
particular, we hope to automate the decision of how fre-
quently machines should send updates to their neighbors.
Both load updates and Q-updates are more useful if they are
sent more often; however, both kinds of updates also tax
precious network bandwidth. Rather than finding the bal-
ance between these two factors through manual experimen-
tation, we would like to devise a network intelligent enough
to determine optimal update frequencies without human as-
sistance.

In addition, we would like to use machine learning to de-
termine what network topology gives optimal performance.
In the research presented here, network performance is op-
timized given a certain network configuration; the structure
of the network is not within the learner’s control. We hope
to develop a system in which machine learning helps deter-
mine the most efficient structure of the network when it is
initially designed, when it needs to be upgraded, or when it
is repaired.

Our on-going research goal is to discover, implement, and
test machine learning methods in support of autonomic com-
puting at all levels of a computer system. Though this initial
work is all in simulation, the true measure of our methods
is whether they can impact performance on real systems.
Whenever possible, our design decisions are made with this
fact in mind. Ultimately we plan to implement and test our
autonomic computing methods, such as Q-router and inser-
tion scheduler, on real computer systems.

Conclusion
The three main contributions of this article are:

1. A concrete formulation of the autonomic computing prob-
lem in terms on the representative task of enterprise sys-
tem optimization.

2. A new vertical simulator designed to abstractly represent
all aspects of a computer system. This simulator is fully
implemented and tested. It is used for all of the experi-
ments presented in this paper.

3. Adaptive approaches to the network routing and schedul-
ing problems in this simulator that out-perform reasonable
benchmark policies.

The research presented in this article indicates that ma-
chine learning methods can offer a significant advantage
for routing and scheduling jobs on complex networks. It
also provides evidence of the value of combining intelli-
gent, adaptive agents at more than one level of the system.
Together these results provide hope that machine learning
methods, when applied repeatedly and in concert, can pro-
duce the robust, self-configuring, and self-repairing systems
that tomorrow’s computing needs will demand.

Acknowledgments
We would like to thank IBM for a generous faculty award
to help jump-start this research. In particular, thanks to

Russ Blaisdell for valuable technical discussions and to Ann
Marie Maynard for serving as a liaison. This research was
supported in part by NSF CAREER award IIS-0237699. Fi-
nally, we would like to thank Gerry Tesauro for his insightful
suggestions about implementing Q-routing.

References
Boyan, J. A., and Littman, M. L. 1994. Packet routing in
dynamically changing networks: A reinforcement learning
approach. In Cowan, J. D.; Tesauro, G.; and Alspector, J.,
eds., Advances in Neural Information Processing Systems,
volume 6, 671–678. Morgan Kaufmann Publishers, Inc.
Brachman, R. J. 2002. Systems that know what they’re
doing. IEEE Intelligent Systems 17(6):67–71.
Caro, G. D., and Dorigo, M. 1998. AntNet: Distributed
stigmergetic control for communications networks. Jour-
nal of Artificial Intelligence Research 9:317–365.
Clark, D. D.; Partridge, C.; Ramming, J. C.; and Wro-
clawski, J. 2003. A knowledge plane for the internet. In
Proceedings of ACM SIGCOMM.
Itao, T.; Suda, T.; and Aoyama, T. 2001. Jack-in-the-net:
Adaptive networking architecture for service emergence.
In Proc. of the Asian-Pacific Conference on Communica-
tions.
Kephart, J. O., and Chess, D. M. 2003. The vision of
autonomic computing. Computer 41–50.
Stone, P., and Veloso, M. 1999. Team-partitioned, opaque-
transition reinforcement learning. In Asada, M., and Ki-
tano, H., eds., RoboCup-98: Robot Soccer World Cup II.
Berlin: Springer Verlag. Also in Proceedings of the Third
International Conference on Autonomous Agents, 1999.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Watkins, C. J. C. H. 1989. Learning from Delayed Re-
wards. Ph.D. Dissertation, King’s College, Cambridge,
UK.

