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Abstract

Racing autonomous cars faster than the best human drivers has been a longstanding
grand challenge for the fields of Artificial Intelligence and robotics. Recently, an
end-to-end deep reinforcement learning agent met this challenge in a high-fidelity
racing simulator, Gran Turismo. However, this agent relied on global features that
require instrumentation external to the car. This paper introduces, to the best of
our knowledge, the first super-human car racing agent whose sensor input is purely
local to the car, namely pixels from an ego-centric camera view and quantities
that can be sensed from on-board the car, such as the car’s velocity. By leveraging
global features only at training time, the learned agent is able to outperform the best
human drivers in time trial (one car on the track at a time) races using only local
input features. The resulting agent is evaluated in Gran Turismo 7 on multiple
tracks and cars. Detailed ablation experiments demonstrate the agent’s strong
reliance on visual inputs, making it the first vision-based super-human car racing
agent.

1 Introduction

Autonomous car racing is a challenging task for intelligent artificial agents, where performance gaps
in milliseconds can be the difference between winning and losing a race. To effectively perform
this task, agents must be able to (i) process high-dimensional sensor data to estimate the state of
the autonomous vehicle, (ii) continuously plan optimal driving lines while avoiding obstacles and
other vehicles, and (iii) control the vehicle, while accounting for its nonlinear behavior and the
conditions of the road (Betz et al., 2022). Recently, deep reinforcement learning (RL) methods have
shown great promise in learning racing behavior through trial-and-error interaction with the race
track environment, without the need for extensive domain knowledge (Jaritz et al., 2018; Imamura
et al., 2021; Cai et al., 2021; Remonda et al., 2021; Herman et al., 2021). Despite their ability to
consistently drive around the track, most learned policies still perform slower than median human
racers (Cai et al., 2021; Herman et al., 2021).

In this work, we focus on learning RL (Sutton & Barto, 2018) agents that are able to achieve
super-human performance in autonomous racing tasks, i.e., they are able to outperform (in terms
of lap time) the best human drivers on a given track. Recently, two RL methods have reported
super-human performance in Gran Turismo, a high-fidelity racing simulator (Fuchs et al., 2021;
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Wurman et al., 2022). However, during execution these methods rely on global features, such as
forward looking course shape information, that require instrumentation external to the vehicle. In
contrast, human drivers rely on car-centric local features to race, such as visual information and
propriocentric features that can be estimated from on-board the vehicle (e.g. velocity of the car).
In this work, we ask the question: can we train RL agents that are able to consistently achieve
super-human performance when provided only with local features at execution time?

Learning optimal racing behavior requires information that might not be possible to access only
through local features at each time step: for example, in a tight corner the agent might be unable to
see the apex and the end of the curve, which are fundamental to select an optimal driving trajectory.
To overcome this challenge, and motivated by recent works on reinforcement learning with partial
observability (Pinto et al., 2017; Salter et al., 2021; Sinha & Mahajan, 2023; Baisero et al., 2022), we
leverage a distributed asymmetric actor-critic architecture that provides global features to the critic
during training. The policy (actor) is provided only with local features, i.e., image and propriocentric
features, allowing the agent to race without global information at execution time.

We evaluate our agent in Gran Turismo 7 (GT7), a high-fidelity driving simulator for PlayStation®.
We show that our agent consistently achieves faster lap times than all human reference drivers (over
130K per scenario) across multiple time trial races, in which the goal is to complete a lap around the
track in the minimum amount of time. Additionally, we conduct an extensive ablation study that
shows the significant contribution of local features and of the asymmetric training scheme to the
agent’s overall performance. Furthermore, we perform a qualitative study on the learned policy and
highlight novel driving lines, in comparison with the best human reference drivers, and demonstrate
the strong reliance on image features for the agent’s decision-making. To the best of our knowledge,
we present the first vision-based super-human car racing agent.

In summary, our contributions are three-fold: (i) we contribute a vision-based RL agent for au-
tonomous racing that employs an asymmetrical actor-critic training scheme; (ii) our agent consis-
tently outperforms all human reference drivers (over 130K) across multiple time trial races in Gran
Turismo 7, while having access only to local features, and performs on par with other super-human
racing agents that rely on global features during execution; (iii) we conduct an extensive evaluation
study that highlights the importance of the asymmetrical training scheme, novel driving behavior
in comparison with the best human reference drivers, and the strong dependence on image features
for the decision-making of our agent.

2 Related Work

Autonomous Racing (AR) is a subfield of autonomous driving research that concerns autonomous
vehicles that operate at their dynamical and power limits within racing environments (such as racing
circuits) (Betz et al., 2022). Research in autonomous racing can traditionally be categorized into
perception (Massa et al., 2020; Peng et al., 2021), planning (Herrmann et al., 2020; Vázquez et al.,
2020) and control (Williams et al., 2018; Hao et al., 2022). In our paper, instead, we employ end-
to-end RL that combines perception, planning, and control into a single process, in particular with
vision inputs, and is able to achieve super-human performance. For an extended version of the
related work, including a discussion on asymmetrical training in RL, please refer to Appendix A.

Vision-based Reinforcement Learning for AR: RL has been shown to be a promising approach
to learn competitive racing behavior (O’Kelly et al., 2019; Herman et al., 2021; Rong et al., 2020;
Dosovitskiy et al., 2017). Jaritz et al. (2018) explore vision-based RL for driving agents in the
context of a rally game. However, the authors find that their method does not achieve optimal
racing trajectories, “lacking anticipation”, and is unable to complete the racing tracks without
colliding several times with obstacles. Cai et al. (2021) described an approach that merges imitation
learning and model-based RL to learn racing behavior. However, their method requires expert-level
demonstrations to pretrain the policy. The racing performance of current vision-based methods is
still sub-optimal. Some works lack a performance comparison against humans (Remonda et al., 2021;
Jaritz et al., 2018) or, when such comparison is made, the methods still under perform significantly



RLJ | RLC 2024

+

+

Training

+

Execution

QR-SAC

+

Figure 1: Our vision-based RL agent for autonomous car racing. (Left) We exploit an asymmetric
actor-critic architecture to train our agent: the policy network πϕ is provided with propriocentric
information op and image features hi, encoded with a convolutional neural network qθ, to output
actions a. The critic network Qψ is provided with local propriocentric observations and global
observations og (i.e., course shape information) to predict quantiles of future returns. (Right)
During execution, our agent only receives local features from the Gran Turismo 7 simulator.

against median human users (Cai et al., 2021; Herman et al., 2021). Imamura et al. (2021) also
explores vision-based RL for racing agents using a pretrained image encoder on random observations
of the track environment. The authors report that they are unable to outperform the best human
players. To the best of our knowledge, we contribute the first vision-based agent that is able to
consistently outperform all human reference drivers across multiple time trial races.

Super-human Performance in AR: Recently, Fuchs et al. (2021) and Wurman et al. (2022) have
reported super-human performance by autonomous racing RL agents in time-trial and actual racing,
respectively. Fuchs et al. (2021) introduced a model-free RL approach and designed a novel proxy
reward that considers the progress of the agent in the course. Their method is able to achieve super-
human performance in time trial races in Gran Turismo Sport, a highly realistic racing simulation.
Wurman et al. (2022) introduced Gran Turismo Sophy (GT Sophy), an RL agent that is able to
achieve super-human performance both in time trial and racing scenarios with multiple opponents.
To achieve super-human performance both approaches require global features (e.g., forward looking
course shape information) at execution time.

3 Methodology

To train a vision-based autonomous racing RL agent that achieves super-human performance without
global features at execution time, we design a distributed asymmetric actor-critic architecture and
employ Quantile Regression Soft Actor-Critic (QR-SAC), a recently introduced distributional RL
algorithm (Wurman et al., 2022). Our method is depicted in Figure 1.

3.1 Observation Space

We build the multimodal observations o of our racing agent at time step t, following,

ot = (olt, ogt ),

where olt corresponds to local (to the car) features and ogt ∈ R531 corresponds to the global features
(i.e., course shape information). As local features olt = (oit, opt ) we consider an image oit ∈ R64×64×3

and propriocentric information opt ∈ R17.

Image features (oit): At each time step we extract an image directly from the game, considering
a first-person view of the track ahead (a camera view denoted by Normal view in the game), from
the front of the vehicle. The image is scaled from 1920×1080 (the native resolution of the game)
to 64×64, with RGB information. Empirically we found this resolution to be sufficient to allow the
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agent to race at super-human speeds, as we show in Section 5.1. Given the low resolution of the
image observation, we turned off all extra information on the screen like the heads-up-display (HUD).
As an artifact of the simulator, the image observation also includes the car’s rear-view mirror. In
Appendix C.3 we show that our agent can still consistently achieve super-human lap times without
any rear-view mirror information. We provide examples of image observations in Figure 2 and in
Appendix B.

Propriocentric features (opt ): We select features for opt that can be easily accessible in a real-world
autonomous racing scenario,

opt = [vt, v̇t, vrt , ct, hat , hdt ],

where vt ∈ R3 corresponds to the linear velocity of the car in its local coordinate system, v̇t ∈ R3

corresponds to the linear acceleration of the car, vrt ∈ R3 corresponds to the angular velocity of the
car, ct ∈ R3 corresponds to the current steering, throttle and brake vector, hat ∈ R3 corresponds to
a short history of the steering angles in the last three steps and hdt ∈ R2 corresponds to the delta
steering changes in the last three steps. The velocity and acceleration features can be estimated
using inertial measurement units (IMU), which are often included in real autonomous vehicles (Betz
et al., 2022), and the steering features can be easily extracted from the car’s guidance system.

Global features (ogt ): Following Wurman et al. (2022), we explore course point information as
global features. Course points are built using the shape of the track, including track limits of the
left and right, and a center line of the track. At each time step, the range of the course points is a
function of the current velocity of the vehicle: we consider the 3D relative coordinates of the course
points ahead of the agent from 0.1 sec up to 6 sec ahead (maintaining the current velocity), equally
spaced on 0.1 sec intervals. This results in 59 course points for each course line (left, center and
right). In Appendix C, we evaluate the effect of course point range on the performance of our agent.

3.2 Action Space

Similarly to Fuchs et al. (2021); Wurman et al. (2022), we define the actions of our agent at ∈ R2,
consisting of a delta steering angle and a combined throttle and brake value. The delta steering angle
at a single time step is limited within [−3◦, +3◦] to prevent steering changes from exceeding human
limitations. The combined throttle and brake is represented by a normalized scalar in [−1, +1].
Values in the positive range represent throttle and ones in the negative range correspond to brake.
The gear shift of the vehicle is controlled by automatic transmission. We set the control frequency
to 10 Hz and the game, running at 60 Hz, linearly interpolates the steering angle between steps.

Due to technical constraints when retrieving images from the game in real-time, we utilized a syn-
chronous communication process between the game and our agent, instead of asynchronous commu-
nication. This mode ensures alignment between the image and propriocentric features. In this mode
our agent does not execute its policy in real-time during training due to the synchronicity of the
simulator. However, we show in Appendix C.2 that executing the trained policies asynchronously,
i.e., in real-time, still allows our agent to achieve super-human performance. In Appendix I, we
provide more details regarding our communication configuration.

3.3 Reward Function

Following Wurman et al. (2022), we designed the reward function of the agent as the weighted
combination of multiple components,

rt = rpt + λorot + λwrwt + λsrst + λhrht .

Course progress (rp): We formulate the lap time minimization problem as a course progress
maximization problem: we compute the progress of the vehicle position, projected onto the center
line of the track, since the last step;
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Table 1: Time trial scenarios for the evaluation of our vision-based racing agent. We evaluate our
approach across different tracks, cars and track conditions. We also consider different tire settings:
racing soft (RS), sport soft (SS) and sport medium (SM). We compare our agent against over 130K
human players in each scenario.

Scenario Track Condition Car Tire Number of participants

Monza Autodromo Nazionale Monza, Italy Day, Clear Ferrari 330 P4 ’67 RS 138,306
Tokyo Tokyo Expressway - Central Clockwise, Japan Night, Clear NISMO 400R ’95 SS 131,598
Spa Circuit de Spa-Francorchamps, Belgium Day, Cloudy Alfa Romeo 4C Launch Edition ’14 SM 144,308

Off-course penalty (ro): We define a shortcut penalty to prevent the agent from violating racing
rules by cutting corners, rot = −(sot − sot−1)|vt|, where so is the total time that the vehicle had (at
least) three tires outside the track limits.

Wall penalty (rw): We define a wall-hit penalty to prevent the agent from exploiting walls to
quickly change its direction of movement, rwt = −(swt − swt−1)|vt|, where sw is the total time the
vehicle was in contact with a wall in the track.

Steering change penalty (rs): To discourage large changes of steering angles in a single step, we
define a steering change penalty, rst = −|θst − θst−1| where θst is the steering angle in radian at time
step t;

Steering history penalty (rh): We additionally define a steering history penalty to discourage
the agent to make inconsistent decisions in a short period of time,

rht = −mt · 1/(1 + exp(−cs · (∆t − co))),

where ∆t = |δt| + |δt−1|, δt = θst − θst−1, mt = Iδt>cd · Iδt−1>cd · Isgn(δt )̸=sgn(δt−1), cd is a threshold
angle, cs is a sensitivity factor and co is an offset value. In Appendix J we provide the reward
function parameter values used in our evaluation.

3.4 Training Architecture

We train our agent using QR-SAC, a distributional RL extension to Soft Actor-Critic (Haarnoja
et al., 2018) with multi-step TD error. In QR-SAC, critic functions are represented with a quantile
distribution function (Dabney et al., 2018) that estimates quantiles of returns.

To achieve super-human performance at execution time, inspired by recent works in RL under partial
observability (Pinto et al., 2017; Salter et al., 2021; Sinha & Mahajan, 2023; Baisero et al., 2022), we
consider an asymmetric actor-critic architecture for QR-SAC training, as shown in Figure 1. During
training, the critic functions are provided with global features og, instead of image observations oi,
allowing them to learn accurate returns. The policy is only provided with image and propriocentric
features op. Since the policy does not depend on the course points to predict actions, the agent is
able to race at execution time only with local observations. We detail our model architecture in
Appendix I and our training hyperparameters in Appendix J.

4 Evaluation

Figure 2: Examples of 64×64 image observations
in (left) Monza, (middle) Tokyo, and (right) Spa.

We evaluate our agents in time trial tasks, where
the goal is to complete a lap across the track in
the minimum time possible. In this section we
cover the track and car scenarios used for test-
ing, the racing baselines, and the human player
data used for comparisons.
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Method Monza Tokyo Spa

Built-in AI 107.828 ± — 87.905 ± — 168.280 ± —

Fastest Human 104.378 ± — 80.782 ± — 157.796 ± —

GT Sophy (Wurman et al., 2022) 104.281 ±0.061 80.227 ±0.047 157.424 ±0.038

Our Agent 104.300 ±0.050 80.401 ±0.091 157.554 ±0.055
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Figure 3: (Top) Lap time across all scenarios. We consider five randomly-seeded training runs and
average the results over 500 evaluation laps, with 100 laps executed by the fastest policy in each
training run. We highlight results that are significantly faster than the fastest human time (using
a Wilcoxon signed-rank test, with p < 0.001); (Bottom) Distribution of lap times in Monza (left),
Tokyo (middle) and Spa (right).

4.1 Scenarios

We evaluate our agent in three scenarios in GT7 with different combinations of cars, tracks, and
conditions (track time and weather): Monza, Tokyo, and Spa, modeled after real-world circuits and
roads. These scenarios were selected based on past GT7 online race events, where human players
joined time trial races using the exact same car setup as our approach1.We provide a more detailed
description of the evaluation scenarios in Table 1 and image observations of the different scenarios
in Figure 2 and in Appendix B.

4.2 Baselines

GT Sophy (Wurman et al., 2022): We use GT Sophy, a recently introduced super-human racing
agent for Gran Turismo, as a baseline in our experiments. As this baseline was shown to be able to
outperform the best human drivers and exploits global features to act, we consider its performance
as an upper-bound to the performance of our method. We modify the action space of GT Sophy,
which originally outputs absolute steering angles rather than delta angles, to match the action space
of our agent. Moreover, we use the same training hyperparameters and reward function as our
method. We train this baseline for GT7 using the same training method described in Wurman et al.
(2022).

Human Players: Human player data was provided by Polyphony Digital Inc., the development
studio of Gran Turismo. For each scenario we collected over 130K lap times and trajectories. We
consider our agent to have super-human performance if it is able to achieve a faster lap time than
the one achieved by the fastest human player in each scenario.

Built-in AI: The built-in AI of GT7 follows a pre-defined human expert trajectory using a rule-
based tracking approach, similar to MPC methods, and serves as a traditional control-based baseline.
We report the minimum lap time of the built-in AI after executing 4 laps in each scenario.

1For more details regarding the online race events, refer to https://www.gran-turismo.com/us/gt7/sportmode/.

https://www.gran-turismo.com/us/gt7/sportmode/
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Figure 4: Performance study of our racing agent in the Monza scenario in relation to the training
architecture (left), local features (middle) and the image feature (right). We consider five randomly-
seeded training runs and show the distribution of 500 evaluation laps, with 100 laps executed by
the fastest policy in each training run. We highlight the lap time of the fastest human player (black
line). One symmetric run failed to learn meaningful behavior and we exclude it from the analysis.

5 Results

We show the minimum lap times achieved by the different agents in Figure 3. In all three scenarios,
our agent achieves super-human performance, with lap times that significantly surpass the perfor-
mance of the best human player. Our agent also achieves comparable performance to GT Sophy,
despite not having any global features at execution time. Our agent achieves this level of perfor-
mance consistently, with small variation across the randomly-seeded runs, as shown in the training
curves in Appendix D, and across the different evaluation laps: for Monza we outperform the fastest
human player in 94.0% of the laps, for Tokyo in 99.8% of the laps and in Spa in all the laps. We
note that the distribution in lap times is a result of the high-fidelity physics engine of the simulator,
where small numerical differences can result in different behaviors, thus preventing the agent from
repeating the same trajectory across multiple laps.

5.1 Ablation Study

We define ablated versions of our method to evaluate the contribution of different architectural
and training choices to the performance of our method, in particular regarding (i) the train-
ing architecture, (ii) local features, and (iii) the image feature. For (i) we employ a symmet-
ric training scheme, where we replace the course points in the critic’s input with image obser-
vations (symmetric training). For (ii) we remove acceleration features, (no acceleration) and
velocity features (no velocity) from op, and remove image features (no image) from ol. For
(iii) we remove color from the image observation (grayscale) and reduce the size of the image
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Figure 5: (Left) Trajectory comparison in the
Monza track between our agent and the fastest hu-
man player in a chicane section. (Right) Gap of
our agent to the human driver. Lower is better.

observation to 32×32 (small image).

We present the results of our ablation study in
Figure 4. Regarding (i) the results show that
providing the critic with global features during
training is fundamental for the performance of
our agent as it mitigates the partial observabil-
ity of the environment, allowing for a better es-
timate of the returns of the policy. Regarding
(ii) we observe that removing velocity features
results in a decrease in the performance of our
agent as, naturally, velocity information is fun-
damental to racing at a consistently high level
around the track. Regarding (iii), the results
highlight that both color and a larger size of
the image helps improve the performance of our
method. Additionally, we found that the no im-



RLJ | RLC 2024

age agent is unable to drive. As such, we do not present this condition in Figure 4. This result
further highlights the importance of visual information for our agent. In Appendix C we report on
additional studies regarding the range of course points for the critic’s input, revealing that we can
further improve the performance of our agent by fine-tuning this parameter; and on the synchronous
communication of our training pipeline, highlighting that we can execute our trained policies in an
asynchronous (i.e., real-time) version of our simulator without significant loss in performance.

5.2 Qualitative Policy Study

We qualitatively evaluate the policy of our agent with regards to its trajectory against the best
human drivers and the importance of visual features for the decision-making of our agent.

Trajectory Analysis: In Figure 5 we compare the trajectories of our agent and of the best human
player in a chicane section. Our agent takes a driving line closer to the track limits, slowing down
only 16.5% of what the human driver slows down in the section, thus gaining 0.24 seconds. The
novel racing behavior exhibited by our agent motivates its use as a training tool for human drivers.
We note that while the agent is able to achieve super-human lap times, it is not faster than the
best human player across all segments of the track. We present an extended version of this study,
including comparisons to GT Sophy, across all scenarios in Appendix E.

Visual Analysis: We employ Guided Gradient-weighted Class Activation Mapping (GGC) (Sel-
varaju et al., 2017), a visual analysis tool for image-based classification tasks (Arrieta et al., 2020;
Linardatos et al., 2020), to understand what high-level features in the input image are relevant to
the decision-making of our agent. We modify the original algorithm for RL tasks, as described in
Appendix G. In Figure 6, we present GGC visualizations for the steering action of our agent in the
Monza track.

The results show a distinct pattern of behavior for different sections in the track. In long straights,
far-away visual features, such as horizon of the track or the tree line, are more significant for the
policy of our agent than close visual features, such as the curb of the track. Naturally, in these
sections, the agent is travelling at high-speeds and mostly needs to focus on identifying where the
straight ends. However, in chicanes and tight curves, our agent focuses on the closer curbs of the
track which are fundamental to successfully change its direction without going off-track and incurring
on a penalty. This gaze-like behaviour echoes the one exhibited by human drivers (Rito Lima et al.,
2020; Van Leeuwen et al., 2017): during straight segments, the human eye gaze focuses straight
ahead, with a stable distance in the horizon, and during curves the eye gaze is focused on the inner
tangent (apex) of the curve. Additionally, our agent uses the uniqueness of the visual features in
the track to localize itself: we see that it considers both forward features (track limits and horizon)
and backward features (rear-view mirror) in its decision-making. We consider that the focus on the
rear-view mirror indicates that the trained policy exploits the static track layout for localization.
We provide additional visualizations for all scenarios in Appendix H.

5.3 Perturbation Study

We conduct an extensive evaluation of the robustness of our agent to input perturbations and differ-
ent track/car conditions in Appendix F. Amongst other results, the study highlights the importance
of visual information for our agent: (i) changes in the lighting conditions of the environment (due
to racing at a different time of the day) degrade significantly the performance of our agent; (ii)
adversarial perturbations to the image observation, in particular to the image features computed
using GGC, also degrade significantly the performance of our agent.

6 Conclusions

In this paper we presented the first super-human, vision-based reinforcement learning agent for
autonomous car racing. To achieve this level of performance, we leverage an asymmetric actor-critic
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Figure 6: GGC visualization of our racing agent for two sections of the Monza track: (left) a straight
section; (right) a chicane section. (Top) We show in pink the positive gradients for the delta steering
angle action computed using the policy of our agent. We show the top 80% of the gradients in the
visualization, to reduce noise. We highlight two different behaviors: in straight sections, our agent
focuses on far-away visual features, such as tree lines (Left: 1, 2) and distinct far-away shades (Left:
3); in chicane sections, our agent focuses on close elements that are fundamental to effectively change
direction, changing its focus from the apex of the immediate curve (Right: 1, 2) to the curb on the
opposite side (Right: 3). Best viewed with color and zoomed in.

architecture that uses global features from the simulator to train accurate critic functions, while
the policy function only uses local features to output actions at execution time. We demonstrated
that our approach surpassed the fastest human lap time in three time trial scenarios and showed
comparable performance to super-human methods that require global features for its policy. We
hope our proposed approach helps to build the foundations for a novel research field on competitive
autonomous racing agents with car-centric input features.

For future work, we consider three research threads to address the limitations of this paper. First,
we plan on extending our approach to racing scenarios with multiple vehicles in the track, in order
to allow vision-based autonomous agents to race against human drivers in the same track. Second,
although we showed that our asymmetric architecture allows us to train super-human agents with
a simple deep RL training setup, we still use propriocentric information as inputs of our agent. To
relax this necessity, we will explore incorporating recurrent neural networks, similarly to Wadekar
et al. (2021). Finally, we plan to add generalization capabilities to our agent, which deals with
conditions unseen during training. We can extend our training setup to include various tracks and
car models with additional image data augmentations (Kostrikov et al., 2020) to mitigate this issue,
and eventually transfer the trained agent to real-world racing vehicles.

Broader Impact Statement

We focused on evaluating our agent in a high-fidelity simulator in this paper. However, our research
can also contribute to the development of real-world end-to-end autonomous race cars. Using car-
centric inputs, agents can control vehicles without using external localization systems that usually
require domain knowledge beforehand or expensive engineering costs to design. By extending our
agent to real world setups, we could simplify the pipeline of autonomous vehicles.
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A Extended Related Work

Autonomous Racing (AR) is a subfield of autonomous driving research (Yurtsever et al., 2020)
that concerns autonomous vehicles that operate at their dynamical and power limits within racing
environments (such as racing circuits) (Betz et al., 2022).

Classical Approaches for AR Research in autonomous vehicle racing can traditionally be catego-
rized into three different sub-areas: perception, planning and control. In perception, the overarching
goal is to enable high-frequency object detection, mapping and localization while the vehicle is
driving around the track at high-speeds: Massa et al. (2020) propose a LIDAR-based localization
system that exploits a previously built map of the track environment to provide localization, achiev-
ing an accuracy of two meters when the car is moving at 200 km/h; Peng et al. (2021) contributes
a multimodal odometry method (image, LIDAR, IMU) using factor-graph optimization to localize
the vehicle in the track; Strobel et al. (2020) use YOLOV3 (Redmon & Farhadi, 2018) to detect
light cones in the limits of the racing track for Formula Student competitions. In planning, the
overarching goal is to plan spatial and velocity trajectories (global and local) that minimize lap
time across the track: Herrmann et al. (2020) formulate an optimization-based velocity planner as a
multi-parametric sequential quadratic problem that can handle a spatial and time variable friction
coefficient; Vázquez et al. (2020) propose a hierarchical controller for autonomous racing, where
the high-level controller computes the optimal trajectory in the race track (raceline) and the low-
level controller attempts to follow the precomputed optimal trajectory; other approaches attempt
to plan high-level behavior (such as overtaking maneuvers, or energy management during a race)
either by assigning plans to a specific cost function and selecting the plan with the lowest overall
cost (Liniger & Lygeros, 2015; Sinha et al., 2020; O’Kelly et al., 2020) or by combining the planner
with game theoretical methods (Notomista et al., 2020; Schwarting et al., 2021; Liniger & Lygeros,
2019). In control, the overarching goal is to develop methods that are able to maintain the vehicle
as close as possible to the planned spatial trajectory and speed profile. For this purpose, model
predictive control (MPC) methods are widely employed: Williams et al. (2018) propose a robust
sampling-based MPC framework based on a combination of model predictive path integral control
and nonlinear Tube-MPC (Mayne et al., 2005), highlighting the framework’s robustness in a real-
world autonomous racing task; Gandhi et al. (2021) contribute a novel architecture for robust model
predictive path integral control (RMPPI) and investigate its performance guarantees, highlighting
its applicability in a real-world off-road navigation task; Li et al. (2021) propose a nonlinear MPC
model under a minimum time objective, which integrates the opponent vehicle’s trajectory as a
collision-avoidance constraint, to allow racing tasks with opponents. In our paper, contrary to all
previous works, we explore end-to-end RL for autonomous racing vehicles that combines the pipeline
of perception-planning-control into a single process.

Deep Neural Networks for AR Recent developments in deep neural networks (DNN) have
allowed the development of end-to-end methods that are able to learn to race directly from observa-
tions. Wadekar et al. (2021) explore different types of data collection techniques to train DNNs to
output steering and throttle actions in a supervised learning manner. Mahmoud et al. (2020) high-
light that reducing the image size in CNN-based networks leads to an increase in the performance of
a DNN-based racing method both in simulation and in the real-world. Contrary to these works, we
focus in RL approaches that learn to perform racing tasks through trial-and-error interaction with
the environment.

Reinforcement Learning for AR RL has also been shown to be a promising approach to learn
suitable racing behavior, motivated in part by the development of realistic driving simulators that
are able to model the dynamics of the car and of the track (O’Kelly et al., 2019; Herman et al.,
2021; Rong et al., 2020; Dosovitskiy et al., 2017). Methods that employ RL to train racing agents
often provide both image observations and additional features, that can be either propriocentric
(e.g., velocity, acceleration) or related to the track (e.g., center line of the track). Jaritz et al. (2018)
explore vision-based RL for driving agents in the context of a rally game. The propose an Asyn-
chronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) architecture that exploits both visual
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information (first-person camera images) and propriocentric features (velocity and acceleration) to
learn to race in the game environment. The authors show that their approach is able to general-
ize to unseen tracks and highlight the importance of initializing the agents at random checkpoints
during training for the performance of the method. However, the authors state that their method
does not achieve optimal racing trajectories, “lacking anticipation”, and is unable to complete the
racing tracks without colliding several times with obstacles. Recently, Cai et al. (2021) described
an approach that merges imitation learning and model-based reinforcement learning to learn au-
tonomous racing agents. Central to their contribution is the Reveries-Net architecture to learn a
probabilistic world model (Ha & Schmidhuber, 2018). The authors propose an iterative training
procedure after pretraining the policy with expert demonstrations: (i) learn the world model with
the current dataset of experiences, (ii) refine the policy using rollouts from the world model and (iii)
collect new data using the refined policy in the environment. The authors evaluate their approach
in simulation and real-world racing environments and demonstrate that their method outperforms
previous imitation learning and RL methods in sample efficiency and performance. However, their
method requires expert-level demonstrations to pretrain the policy and cannot be trained only from
interaction with the environment. Despite their reported ability to consistently drive around the
track, the racing performance of these methods is still sub-optimal: some works lack a performance
comparison against humans (Remonda et al., 2021; Jaritz et al., 2018) or, when such comparison is
made, the methods still under perform significantly against median human users (Cai et al., 2021;
Herman et al., 2021): for example, Cai et al. (2021) reports a 10 second gap to the lap time of a
normal human user. Imamura et al. (2021) also explores vision-based RL for racing agents. The
authors propose to pretrain an image encoder on observations of the track environment collected by
a random policy and, subsequently, use the frozen encoder during policy training. However, their
method can only achieve expert-level performance in time trial tasks, still reporting a three second
difference to the best human players. In this work, we contribute a novel vision-based RL agent that
consistently outperforms the best human drivers in a racing task.

Super-human Racing Performance in AR Recently, super-human performance of autonomous
racing RL agents have been reported by Fuchs et al. (2021) and Wurman et al. (2022). Fuchs et al.
(2021) introduced a model-free RL approach and designed a novel proxy reward that considers the
progress of the agent in the course. The method is able to achieve super-human performance in time
trial tracks in Gran Turismo Sport (GTS), a highly realistic racing simulation. Moreover, the authors
show that their approach generates trajectories that are qualitatively similar to the ones recorded by
the best human drivers, highlighting high-level racing behavior (such as in-out driving along curves).
More recently, Wurman et al. (2022) introduced Gran Turismo Sophy (GT Sophy) agent, a RL agent
that is able to achieve super-human performance both in time trial and racing tasks with multiple
opponents in GTS. To achieve this level of performance, the authors contribute a novel asynchronous
distributional actor-critic algorithm (QR-SAC) using multiple training scenarios (e.g., with different
number of opponents, with randomized positions and speeds). Furthermore the authors designed a
novel reward function that accounts for track-related behavior (e.g., progress in the course, off-course
racing) and for event-related behavior (e.g., overtaking opponents or being overtaken, colliding with
opponents). The authors show that GT Sophy is able to exhibit tactical skills that allow it to
beat expert humans in head-to-head racing. However, to achieve super-human performance both
approaches require global features, such as forward looking course shape information. In this work,
we contribute the first RL agent that is able to achieve super-human performance in a racing task
using only car-centric local features during execution.

Asymmetric Reinforcement Learning Recent works have explored asymmetrical training ar-
chitectures for reinforcement learning to mitigate partial observability during execution time (Pinto
et al., 2017; Salter et al., 2021; Kamienny et al., 2020; Sinha & Mahajan, 2023; Baisero et al., 2022).
Pinto et al. (2017) explored asymmetrical training in the context of learning policies in simulation
for robotic systems that are transferable to real-world setups. To do so, the authors design an asym-
metrical actor-critic training scheme in which the critic is provided with the state of the simulation
environment and the policy is provided with RGBD information. Furthermore, the authors introduce
domain randomization during training in the simulator, showing that it improves the robustness of
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Figure 7: Description of the tracks, cars and examples of image observations used to train and
evaluate our racing agent. We rescale all images to 64×64, without any modification. We turn off
all HUD information. The top notch in images is a rear mirror view of the vehicle.

the learned policy to distractor elements during execution in real-world experiments. However, do-
main randomization can often lead to an increase the complexity of the learning process, impacting
the overall performance of the agent. To address this issue Salter et al. (2021) propose to train two
actor-critic agents that share experiences: one that is provided with state information and another
that is provided with image information. Furthermore, the authors introduce an attention mecha-
nism in each agent that is aligned throughout training. The authors show that the attention-based
asymmetrical training scheme improves the efficiency and the robustness of the learning process.
In contrast to prior work, Kamienny et al. (2020) explores providing privileged information (PI) to
both the critic and the policy networks using dropout. In particular, the authors evaluate the use of
PI-Dropout (Lambert et al., 2018) in the context of RL and show how it outperforms other methods
to exploit privileged information, such as distillation or auxiliary losses, in scenarios with partial
observability. In the previous works the asymmetrical training scheme is posited experimentally,
without theoretical guarantees on the convergence of the algorithms. Recent works have studied the
theoretical properties of asymmetrical reinforcement learning: Baisero et al. (2022) introduced an
asymmetrical version of policy iteration and of the Q-learning algorithm with convergence guaran-
tees; Sinha & Mahajan (2023) proposed an asymmetrical version of the actor-critic algorithm and
derive performance bounds on their algorithm. Asymmetric training has also been explored in the
context of multi-agent reinforcement learning (MARL), in part to deal with the decentralized nature
of executing policies for multiple agents (Oliehoek et al., 2008; Rashid et al., 2020; Sunehag et al.,
2017; Lyu et al., 2023). Approaches in cooperative MARL often exploit the paradigm of Centralized
Training with Decentralized Execution (CTDE): during training, agents have access to a centralized
critic that exploits the joint observation of all agents; at execution time each agent can only exploit
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its own observation to run their policy (Oliehoek et al., 2008; Sunehag et al., 2017; Rashid et al.,
2020).

In this work, we also explore an asymmetrical actor-critic training scheme, where we provide global
features to the critic, allowing the execution of the policy only with local features. We show how
our approach enables learning super-human racing agents.

B Additional Details of the Evaluation Scenarios

In this section we present additional details regarding our evaluation scenarios. In Figure 7 we
present the track layouts, the cars employed and examples of image observations across the three
scenarios. We highlight that our agent achieves super-human performance across a wide variety of
car dynamics, track layouts and conditions.

C Additional Ablation Studies

C.1 Course Point Range

We evaluate how the range of the course point feature affects the performance of our agent. We
reduce the range to 2 seconds and 4 seconds, denoted as low and medium course points respectively.
Figure 8 shows the result of comparing our agent to the variations with different range of course
points. We observe that the shorter range of course points makes performance unreliable. On
the other hand, using medium course point range slightly improves the performance of our agent.
In this paper, we used the same range of course points as the one described in Wurman et al.
(2022). However, this result indicates that tuning this hyperparameter could provide an additional
performance improvement to our agent. We leave the tuning of this parameter for future work.

C.2 Synchronous Training and Execution

As discussed in Appendix I, to train our agents we employ a synchronous training and testing scheme,
similar to other simulators such as OpenAI Gym (Brockman et al., 2016), where the simulator
only executes simulation steps after receiving the next action commands sent by a rollout worker.
However, by default, GT7 executes its simulation asynchronously in real time. We evaluate the
feasibility of learning and executing policies in an asynchronous setting. Figure 8 shows the result
of comparing our agent, which trains and executes only on an synchronous mode, to the variations
which: (i) train in synchronous mode and executes in asynchronous mode (Sync/Async) and (ii)
train and executes in asynchronous mode (Async/Async). The results highlight the importance
of the synchronous training, as training our agent with asynchronous mode results in a significant
decrease in performance: this variation is only able to outperform the best human drivers only in
7.45% of the laps. However, the performance of the policy of the agents that train in synchronous
mode and execute asynchronously does not decrease significantly and is still able to outperform the
best human drivers in 69.3% of the laps. For future work, we plan on exploring parameter-efficient
neural networks and optimizing hardware setups to mitigate the effect of latency on the control of
our agents.

C.3 Training with Masked Rear-view Mirror

In Section 5.2 we show that our agent considers information in the rear-view mirror section of
the image observation to race across the task. To understand whether the rear-view mirror is
fundamental to achieve the super-human performance, we additionally train our agents without
rear-view mirror information, by masking this section with black pixels. Figure 8 shows that our
agent can still consistently achieve the super-human lap time even without the rear-view mirror.
Based on this experimental result, we conclude that the attention to the rear-view mirror is an
artifact of our end-to-end training scheme on a track with a static layout.
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Figure 8: Performance study of our racing agent in the Monza scenario in regards to (top left)
different range of course points, (top right) different training/test synchronicity conditions and
(bottom) different setups in the rear-view mirror. Additionally, we highlight the lap time of the
fastest human player (black dashed line). We consider five randomly-seeded training runs and show
the distribution of 500 evaluation laps, with 100 laps executed by the fastest policy in each training
run. Lower is better.

D Training Curves

We present in Figure 9 the overall training curves of our agent across all scenarios. The results show
that our agent quickly exceeds top 1% human performance and is able to consistently surpass the
fastest human lap time. At the end of training, our agent also achieved comparable performance to
GT Sophy. We also present the overall training curves of our agent across all ablation conditions of
Section 5.1 and Appendix C in Figure 10.

E Additional Trajectory Analysis

E.1 Comparison to Fastest Human Driver

We qualitatively compare the trajectories of our agent and of the best human player across all
scenarios: Monza in Figure 11, Tokyo in Figure 12 and Spa in Figure 13.

The results show, across multiple sections of the tracks, that our agent does not simply follow the
trajectory of the fastest human player but, in fact, exhibits novel racing behavior: in Monza, in
straights our agent drives much closer to the curb, while the human player takes a more center
line along the track, and in curves and chicanes it takes different driving lines; in Tokyo we once
again see that our agent takes driving lines much closer to the curb than the fastest human; in Spa
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Figure 9: Training curves of our agent across all scenarios. We present the lap time per training
epoch averaged over five randomly-seeded runs, with 95% confidence interval. We compare our agent
against human performance (10%, 1% and fastest) and GT Sophy. Training curves are smoothed
for visual clarity.
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(h) Asynchronous Training
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Figure 10: Training curves of our agent across all ablation conditions of Section 5.1 and Appendix C.
We present the lap time per training epoch averaged over five randomly-seeded runs, with 95%
confidence interval. Training curves are smoothed for visual clarity.
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Figure 11: Trajectory comparison between our agent and the fastest human player in the Monza
track. We highlight this comparison on (1, 3) straight sections approaching a curve, (2) a chicane
section and (4) a curve section. We show in the figure the course progression of each segment as
well as the time gained (negative values) or lost (positive values) to the best human driver. Best
viewed zoomed in.
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Figure 12: Trajectory comparison between our agent and the fastest human player in the Tokyo
track. We highlight this comparison on (1, 2) straight sections and (3) a curve section. We show in
the figure the course progression of each segment as well as the time gained (negative values) or lost
(positive values) to the best human driver. Best viewed zoomed in.
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Our Agent Fastest Human

1(300-500 m)
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1(-0.077 s)
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3(-0.114 s)

Figure 13: Trajectory comparison between our agent and the fastest human player in the Spa track.
We highlight this comparison on (1) a U-turn section, (2) a straight section and (3) a chicane section.
We show in the figure the course progression of each segment as well as the time gained (negative
values) or lost (positive values) to the best human driver. Best viewed zoomed in.
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(b) Tokyo
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(c) Spa

Figure 14: Time difference between our agent and the best human reference driver as a function of
the progression in the track. We identify the trajectory sections highlighted in the Monza (Figure 11),
Tokyo (Figure 12) and Spa (Figure 13) tracks. Lower is better.
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2(3400-3850 m)

1(0-600 m)

3(4300-5000 m)

Our Agent GT Sophy

Figure 15: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Monza track. We highlight this comparison on sections that our trajectory is significantly different
from Sophy’s (1, 3) and sections where our agent loses time to Sophy (2). Best viewed in color and
zoomed in.
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1(1300-1600 m)

2(1800-1950 m)

3(2050-2300 m)

4(2500-3000 m)

Our Agent GT Sophy

Figure 16: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Tokyo track. We highlight this comparison on sections where our trajectory is significantly different
from GT Sophy’s (1, 3) and sections where our agent loses time to Sophy (2, 4). Best viewed in
color and zoomed in.



RLJ | RLC 2024

1(1700-2250 m)

2(3700-4000 m)3(5200-6000 m)

Our Agent GT Sophy

Figure 17: Trajectory comparison between our agent and GT Sophy (Wurman et al., 2022) in the
Spa track. We highlight this comparison on sections where our trajectory is significantly different
from GT Sophy’s (1) and sections where our agent loses time to Sophy (2, 3). Best viewed in color
and zoomed in.
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Figure 18: Time difference between our agent and GT Sophy as a function of the progression in the
track. We identify the trajectory sections highlighted in the Monza (Figure 15), Tokyo (Figure 16)
and Spa (Figure 17) tracks. Lower is better.
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the results show that our agent takes different driving lines in both straights and curves. These
significant differences in driving behavior raise the potential to use super-human racing agents as a
training tool for human drivers, as previously identified in (Wurman et al., 2022).

We also present the time difference between our agent and the fastest human reference driver along
the progression of the track in Figure 14. The results show the competitive nature and challenge of
our task: our agent does not simply outperforms the human driver from the beginning of the lap,
but gains and loses time against the human driver throughout the whole track. However, by the end
of the track, our agent is able to outperform the fastest human driver.

E.2 Comparison to GT Sophy

We qualitatively compare the trajectories of our agent and of GT Sophy (Wurman et al., 2022)
across all scenarios: Monza in Figure 15, Tokyo in Figure 16 and Spa in Figure 17. The results show
that overall the trajectory of our agent follows that of Sophy, despite our agent not having access to
global features. However, the results show that often in long straights, for example Figure 15 (1, 3),
our agent takes a different racing line to Sophy, due to the absence of long-range information about
the track in our agent’s input.

Additionally, in Figure 18 we present the time difference between our agent and GT Sophy along
the progression of the track, to understand where our agent actively loses time. The results show
that, despite the similarity of the trajectories in these sections, our agent mostly loses time in curve
sections, for example Figure 17 (2, 4). This result hints that GT Sophy, having access to long-range,
precise information about the forward track limits, can approach the curve with a better velocity
profile, leading to the sudden increase in the time difference between our agent and GT Sophy.

F Perturbation Study

To identify the limitations of our agent, we conducted an additional evaluation under various per-
turbation conditions. In this section, we select the top five agents from each Monza trial, for all
evaluation. Note that training an agent able to generalize to unseen conditions during training is
outside the scope of this work. For completeness, we present here a robustness evaluation and leave
the further improvement of the generalization of our agent to future work.

Noise in propriocentric observations: We evaluated our agent under different levels of noise in
the propriocentric observations by following the same procedure of Fuchs et al. (2021). All agents
completed laps with 2% noise and 33% of the agents completed laps with 4% noise. However, the
agents are no longer able to drive with more than 6% noise. Figure 19a shows the average lap times
of the completed laps, which suggests that the agent loses racing performance with increased noise
levels in the propriocentric observation.

Noise in image observations: We evaluated our agent under different levels of noise in the image
observations. The noise level is defined as the percentage of randomly selected pixels from the
complete image that are replaced by black pixels at each time step. We additionally evaluated the
same type of noise applied to the pixels highlighted by GGC analysis, as described in Section 5.2,
which we denote as GGC. Note that GGC, on average, highlights up to 5% of the total number
of pixels of the image in our setting. Figure 19b shows the course progression achieved by the
agents with each noise level. The agents consistently completed laps with up to 10% noise and
didn’t complete any laps at 20% noise. Interestingly, the agents dropped performance significantly
with GGC-based noise even though GGC only highlights 5% of pixels at most. This result further
indicates that the pixels highlighted by GGC are vital for our agent to control the vehicle.

Generalization to different time-of-the day conditions: GT7 allows us to change the time of
the race, resulting in a change in environmental elements, such as position and number of clouds,
but also on the lighting conditions of the track. We then use the time of the race as a feature to
evaluate the robustness of our agent against image perturbations. We observe that evaluating our
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Figure 19: Results of the perturbation study of our agent in the Monza scenario: (a) Completed
lap times of agents with noise in the propriocentric features added during evaluation; (b) Course
coverage of agents with noise in the image features added during evaluation; (c) Course coverage of
agents with different car models during evaluation.
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agents at different times than the one of training results in their inability to complete laps around
the track.

Generalization to different cars: To test the robustness of our agent to unseen dynamics, we
evaluate it with different car models from the one used during training. We sorted all car models
available in GT7 by horsepower and selected four neighbor car models (two slower cars and two faster
cars)2. Figure 19c shows the course progression achieved by each car model. The result suggests that
executing our policy in cars with increasingly higher horsepower leads to the worse generalization
capability: due to their higher performance (e.g. in terms of velocity), the agent may experience
dynamical states not experienced during training (e.g., high velocities in straight sections). On the
other hand, the results show that our agent is comparably better in driving lower-performance cars.

G Guided Grad-CAM for Visual Analysis of Policies

We adapt the basic Guided Gradient-weighted Class Activation Mapping (GGC) (Selvaraju et al.,
2017) algorithm to RL scenarios, following:

1. During execution, we perform a forward pass given image and propriocentric observations
(oi, op). The policy network outputs an action-specific average value a, from a truncated
Gaussian distribution N (a, aσ).

2. We compute the gradient of the mean a with respect to the feature maps Ak in the last
convolutional layer of the image encoder (Conv4 in Table 2):

∂a

∂Ak
.

3. We apply a global average pooling to the Grad-CAM gradient to obtain neuron importance
weights wk

a for each feature map:

wk
a = 1

Z

∑
i

∑
j

∂a

∂Ak
ij

,

where Z = W × H is the normalization factor for the spatial dimensions of the feature map,
W is the weight of the feature map and H is the height of the feature map.

4. We obtain the Grad-CAM activation map, LGrad-CAM by performing a weighted combination
of the feature maps followed by a ReLU function:

LGrad-CAM
a = ReLU

(∑
k

wk
aAk

)
.

5. We perform a separate backpropagation step to compute the gradient of the action value a
with respect to the input image observation oi:

∂a

∂oi .

Furthermore, we filter out negative values from this gradient, in order to consider only
features that have a positive influence on the action.

6. We multiply the Grad-CAM activation map with the guided backpropagation result to
obtain the Guided Grad-CAM visualization:

LGuided Grad-CAM
a = LGrad-CAM

a × ∂a

∂oi .

7. Finally, we normalize the GGC visualization and, possibly, clip the result by a predefined
noise threshold value.

2The selected car models are Porsche 959 ’87, Peugeot 205 Turbo 16 Evolution 2 ’86, Dodge Viper GTS ’02, and
Lamborghini Countach 25th Anniversary ’88, in ascending order of horsepower.



RLJ | RLC 2024

H Additional Guided Grad-CAM visualizations

We present additional GGC visualizations for the action delta steering angle for our agent across all
tracks: Monza (Figure 20), Tokyo (Figure 21) and Spa (Figure 22). Once again, the results shows
that our agent focuses on different features depending on the track section: in long straights, our
agent focuses on far-away visual features, such as horizon of the track or tree lines in the distance,
while in chicanes and tight curves, our agent focuses on the curbs of the track, which are fundamental
to successfully change its direction without going off-track.

I Implementation Details

Model Architecture: We provide the detailed architecture of our agent in Table 2.

Data collection: At the beginning of every episode, the initial position of the agent is uniformly
sampled from in-course areas as well as left and right off-course areas within 5% of track width. The
agent faces towards a center line 30m ahead and the launch speed is uniformly sampled from 0 to
104.607km/h. We reset the episode every 150 seconds.

Distributed training: Unlike widely used RL simulators that can execute faster with powerful
computing resources (e.g., MuJoCo (Todorov et al., 2012)), GT7 executes its simulation in real
time. To compensate for the simulation speed, we use an asynchronous distributed training scheme
by following Wurman et al. (2022). In this work, we consider 20 rollout workers for data collection
and policy evaluation, each assigned to a different PlayStation® 4 system connecting to rollout
workers via ethernet. However, the game screen retrieval via ethernet induces additional latency,
which makes it difficult to train agents in real time. Therefore, we configured the simulator to block
simulation steps until the simulator receives the next action commands sent by the rollout worker.
We applied this setting to all experiments including the baseline GT Sophy. We evaluate the impact
of the synchronous communication scheme on the performance of our agent in Appendix C.2.

J Reward and Training Hyperparameters

We present in Table 3 the reward function parameters used in our work, selected empirically. More-
over, we present in Table 4 the list of training hyperparameters used by our approach. We keep the
same hyperparameters across all scenarios, except for the number of training epochs: in Monza we
use 4000 training epochs and in both Tokyo and Spa we use 2000 epochs, where an epoch consists
of 6000 gradient steps. We use a higher number of training epochs in Monza because in this scenario
we employ a faster racing car, which requires a more precise maneuver to achieve a higher level of
performance.

K Additional Details on Image Resolution

To highlight how image compression affects the elements in the observation of our agent, we provide
examples of game images with different resolutions in Figure 23: the original 1920 × 1080 image,
a 64 × 64 image used by our agent and a reduced 32 × 32 image used in our ablation study in
Section 5.1. The figure shows that across all resolutions we can identify critical elements of the
environment to perform the task (such as the track limits), yet with decreasing level of precision.

The choice of resolution also affects the total parameter count of our model: since we keep the same
architecture for both our agent and the small image ablated version, the size of feature maps for
the latter version in each convolutional layers is half the size of values of the former, described in
Table 2. It may be possible to improve the performance of the small image ablation by optimizing
the convolutional encoder architecture for input images of 32 × 32, but we leave this exploration to
future work.
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(a) Straight section (150-539 m)

(b) Chicane section (899-993 m)

Figure 20: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Monza
track: (Top) a straight section; (Bottom) a chicane section. We show in pink the positive gradients
for the delta steering angle action computed using the policy of our agent. We show the top 80% of
the gradients in the visualization, to reduce noise. Best viewed with color and zoomed in.
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(a) Straight outdoor section (625-898 m)

(b) Straight tunnel section (3499-3787 m)

Figure 21: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Tokyo
track: (Top) a straight outdoor section; (Bottom) a straight indoor section. We show in pink the
positive gradients for the delta steering angle action computed using the policy of our agent. We
show the top 80% of the gradients in the visualization, to reduce noise. Best viewed with color and
zoomed in.



RLJ | RLC 2024

(a) Chicane section (2296-2484 m)

(b) Straight section (2741-2963 m)

Figure 22: Guided Grad-CAM (GGC) visualization of our racing agent for two sections of the Spa
track: (Top) a chicane section; (Bottom) a straight section. We show in pink the positive gradients
for the delta steering angle action computed using the policy of our agent. We show the top 80% of
the gradients in the visualization, to reduce noise. Best viewed with color and zoomed in.

(a) 1920 × 1080 (Native screen resolution) (b) 64 × 64 (Our Agent) (c) 32 × 32 (Small Image)

Figure 23: Example observations with three different resolutions: in images with 64 × 64 resolution
we can still observe some level of detail in most objects; However, in images with 32 × 32 we are
able to recognize only basic elements of the environment (e.g., track limits, sky, background).
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Table 2: Model architecture of our racing agent.

Layer Description Input Dimensions Output Dimensions

Actor Network
Conv1: 64 filters, 4x4, stride 2, ReLU 64x64x3 32x32x64
Conv2: 128 filters, 4x4, stride 2, ReLU 32x32x64 16x16x128
Conv3: 256 filters, 4x4, stride 2, ReLU 16x16x128 8x8x256
Conv4: 512 filters, 4x4, stride 2, ReLU 8x8x256 4x4x512
FC, 128 units, ReLU 4x4x512 128

MLP FC1: 2048 units, ReLU 145 (128 + 17) 2048
MLP FC2: 2048 units, ReLU 2048 2048
MLP FC3: 2048 units, ReLU 2048 2048
MLP FC4: 2048 units, ReLU 2048 2048
MLP FC Output: 4 units, Tanh 2048 4

Critic Network
MLP FC1: 2048 units, ReLU 531 2048
MLP FC2: 2048 units, ReLU 2048 2048
MLP FC3: 2048 units, ReLU 2048 2048
MLP FC4: 2048 units, ReLU 2048 2048
MLP FC Output: 32 units, linear 2048 32

Table 3: Reward parameters of our racing agent.

Parameter Value

λo 10
λw 10
λs 3
λh 5
cd 0.014
cs 182.883569
co 0.034
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Table 4: Training hyperparameters of our racing agent.

Hyperparameter Value

Activation function ReLU
Optimizer Adam (Kingma & Ba, 2014)
Batch size 512
Policy learning rate 2.5 × 10−5

Critic learning rate 2.5 × 10−5

Global norm of critic gradient clipping 10
Discount factor 0.9896
SAC entropy temperature (Haarnoja et al., 2018) 0.01
Number of quantiles 32
Multi-step 7
Replay buffer size 2.5M


