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Ex-BMDP Model (Efroni et al. 2022b)

• State x ∈ X can be factored into:


• Endogenous state s ∈ S, discrete, evolves deterministically according to actions 


• Exogenous state e ∈ ℰ, stochastic, independent of actions (noise)


• Factorization is not known a priori, and s and e are not observed.



Representation Learning In Ex-BMDP Framework

• Learn encoder φ that maps x to s

• Dynamics on S can be inferred by counting

• Ignore/don’t learn dynamics on ℰ



Representation Learning In Ex-BMDP Framework

• Why learn Control-Endogenous Representation?

• Interpretability

• Planning

Fig. From Lamb et al. 2022



Representation Learning In Ex-BMDP Framework

• Existing Methods:

• Efroni et al. (2022a, 2022b), Mhammedi (2023):  finite-horizon setting, 

learn separate encoders φt at each t. 
• Lamb et al. (2022): infinite-horizon setting with no resets 
• Bounded diameter assumption: ∀ s,s’ ∈ S, d(s,s’) ≤ D



AC-State (Lamb et al., 2022)
• “Multistep Inverse”: predict at given φ(xt), φ(xt+k), k:


• Must show that learned φ won’t conflate two different states s, s’ ∈ S.



AC-State (Lamb et al., 2022)
• Proof Sketch (re-framed): 
• For a,b ∈ S, Let “witness distance” W(a,b) be the minimum k such that ∃c∈ S, such 

that a and b can both be reached from c in exactly k steps.


• Compare P(at | st = c, st+k = a) vs. P(at | st = c, st+k = b)

• Distributions have disjoint support! Otherwise W(a,b) < k. Therefore φ must 

distinguish a, b.

• Bounded diameter: ∀ a,b ∈ S, W(a,b) ≤ D → k ~ U({1,…D}) steps is sufficient.  
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D Steps is Not All You Need

• AC-State with K=D=3 learns incorrect encoder that conflates c and d.

• Encoder is incorrect, because we are able to control whether we’re in 

state c or state d, but this representation doesn’t show this



D Steps is Not All You Need

• In practice, D is not known a priori; max number of steps used is 
hyperparameter K.


• If not D, how many steps do we need?

• Theorem: If W(a,b) is finite, then W(a,b) ≤ 2D2 + D

• Tight up to constant factor: we can construct dynamics where AC-State 

fails using K = D2/2 + O(D) steps for arbitrarily large D
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Multistep Inverse is Not All You Need

• Dynamics learned with AC-State (For any K) not deterministic: not a valid 
endogenous latent representation.



ACDF

• New algorithm to fix AC-State:

• Where:

• D is replaced by D’, any upper bound on finite witness distances (can 

use D’ := 2D2+D; in practice, a hyperparameter.)

• Added latent forward model g: predict φ(xt+1) given φ(xt) and at


• AC-State + D’ + Forward model = ACDF 
• Theorem (informal): Encoders which minimize ACDF loss encode a 

correct endogenous latent representation.



Results: Tabular
Endogenous Dynamics T Exogenous Noise Te AC-State Success Rate ACDF Success Rate

Env. steps: 200 400 800 1600 3200

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

K=5 0% 0% 0% 0% 0%

K=6 0% 0% 0% 0% 0%

K=7 76% 100% 100% 100% 100%

Env. steps: 200 400 800 1600 3200

K=1 100% 100% 100% 100% 100%

K=2 100% 100% 100% 100% 100%

K=3 100% 100% 100% 100% 100%

K=4 100% 100% 100% 100% 100%

K=5 100% 100% 100% 100% 100%

K=6 100% 100% 100% 100% 100%

K=7 100% 100% 100% 100% 100%

Env. steps: 100 200 400 800 1600

K=1 0% 0% 0% 0% 0%

K=2 0% 0% 0% 0% 0%

K=3 0% 0% 0% 0% 0%

K=4 0% 0% 0% 0% 0%

Env. steps: 100 200 400 800 1600

K=1 30% 14% 12% 8% 6%

K=2 92% 100% 100% 100% 100%

K=3 86% 98% 100% 100% 100%

K=4 84% 98% 100% 100% 100%

Env. steps: 100 200 400 800 1600

K=1 0% 0% 0% 0% 0%

K=2 74% 100% 100% 100% 100%

K=3 24% 70% 100% 100% 100%

K=4 4% 19% 74% 97% 100%

K=5 0% 0% 44% 92% 100%

Env. steps: 100 200 400 800 1600

K=1 98% 100% 100% 100% 100%

K=2 91% 100% 100% 100% 100%

K=3 68% 100% 100% 100% 100%

K=4 18% 88% 100% 100% 100%

K=5 4% 50% 98% 100% 100%

Env. steps: 1000 2000 4000 8000 16000

K=10 0% 0% 0% 0% 0%

K=13 0% 0% 0% 0% 0%

K=16 0% 0% 0% 0% 0%

K=19 0% 0% 2% 0% 0%

K=22 0% 0% 2% 54% 98%

K=25 0% 0% 0% 18% 80%

K=28 0% 0% 0% 4% 38%

Env. steps: 1000 2000 4000 8000 16000

K=10 0% 2% 0% 0% 0%

K=13 0% 12% 22% 64% 96%

K=16 0% 22% 96% 100% 100%

K=19 0% 12% 88% 100% 100%

K=22 0% 0% 68% 100% 100%

K=25 0% 0% 42% 98% 100%

K=28 0% 0% 32% 98% 100%

(D’ > D)

(D’ > D)

(“Control”: D’ ≤ D; Aperiodic)

(Periodic)

(None)



Results: Deep Learning
• Gridworld-like maze navigation task and network architecture from 

released code of Lamb et al. (2022).

• Compared original maze environment to a periodic variant of the 

environment, and original AC-State loss function to ACDF.

• Evaluation based on success of encoder for open-loop planning.



Results: Deep Learning



Future Work
• Sample-complexity guarantees:

• Neither AC-State nor ACDF have sample-complexity guarantees.

• While sample-efficient algorithms have been proposed for finite-horizon 

Ex-BMDPs (Efroni et al. 2022a, 2022b; Mhammedi 2023), a method 
which such guarantees has not yet been proposed in the reset-free 
setting.


• State generalization/structured states:

• Existing Ex-BMDP algorithms assume that every possible endogenous 

latent state is frequently visited during training.

• There is a need to efficiently learn latent dynamics with combinatorial 

structure.
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