Multistep Inverse Is Not All You Need
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Ex-BMDP Model (Efroni et al. 2022b)
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e State x € X can be factored into:

 Endogenous state s € S, discrete, evolves deterministically according to actions
 Exogenous state e € g, stochastic, independent of actions (noise)

e Factorization is not known a priori, and s and e are not observed.



Representation Learning In Ex-BMDP Framework
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Representation Learning In Ex-BMDP Framework

 Why learn Control-Endogenous Representation?
* |nterpretability
* Planning

Fig. From Lamb et al. 2022



Representation Learning In Ex-BMDP Framework

o EXxisting Methods:

o Efroni et al. (20223, 2022b), Mhammedi (2023): finite-horizon setting,
learn separate encoders ¢+ at each t.

 Lamb et al. (2022): infinite-horizon setting with no resets
 Bounded diameter assumption: v s,s’ € S, d(s,s’) <D



AC-State (Lamb et al., 2022)

« “Multistep Inverse”: predict a: given d(xt), d(xt+x), K:
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 Must show that learned ¢ won’t conflate two different states s, s’ € S.



AC-State (Lamb et al., 2022)

 Proof Sketch (re-framed):

e Fora,b e S, Let “witness distance” W(a,b) be the minimum k such that 3ce S, such
that a and b can both be reached from c in exactly k steps.
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» Compare P(at | st = c, stk = a) vs. P(at | st = C, St+k = b)

* Distributions have disjoint support! Otherwise W(a,b) < k. Therefore ¢ must
distinguish a, b.

 Bounded diameter: v a,b € S, W(a,b) <D — k ~ U({1,...D}) steps is sufficient.
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 Proof Sketch (re-framed):

e Fora,b e S, Let “witness distance” W(a,b) be the minimum k such that 3ce S, such
that a and b can both be reached from c in exactly k steps.

» Compare P(at | st = c, stk = a) vs. P(at | st = C, St+k = b)

* Distributions have disjoint support! Otherwise W(a,b) < k. Therefore ¢ must
distinguish a, b.

» Bounded diameter: V 2.
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D Steps is Not All You Need

e AC-State with K=D=3 learns incorrect encoder that conflates ¢ and d.

e Encoder iIs iIncorrect, because we are able to control whether we’re In
state c or state d, but this representation doesn’t show this



D Steps is Not All You Need

* In practice, D is not known a priori; max number of steps used is
hyperparameter K.

e |If not D, how many steps do we need?
 Theorem: If W(a,b) is finite, then W(a,b) < 2D? + D

* Tight up to constant factor: we can construct dynamics where AC-State
fails using K = D2/2 + O(D) steps for arbitrarily large D
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Multistep Inverse is Not All You Need
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 Dynamics learned with AC-State (For any K) not deterministic: not a valid
endogenous latent representation.



ACDF

 New algorithm to fix AC-State:

LacDr(¢g) :=min | L —log(fa,(Po(zt), po(zt+k); K))
f k)N{l ..... D’} (wt,at,$t+k)
+ min v = log(g¢9(xt+1)(¢9($t)7 a’t))°

) (mtaataxt—}—l)

e \Where;

 Disreplaced by D’, any upper bound on finite witness distances (can
use D’ := 2D2+D; In practice, a hyperparameter.)

 Added latent forward model g: predict ¢p(xt+1) given d(xt) and at

e AC-State + D’ + Forward model = ACDF

 Theorem (informal): Encoders which minimize ACDF loss encode a
correct endogenous latent representation.



Results: Tabular
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Results: Deep Learning

 Gridworld-like maze navigation task and network architecture from
released code of Lamb et al. (2022).

» Compared original maze environment to a periodic variant of the

environment, and original AC-State loss function to ACDF.

» Evaluation based on success of encoder for open-loop planning.
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Future Work

e Sample-complexity guarantees:
* Neither AC-State nor ACDF have sample-complexity guarantees.

* While sample-efficient algorithms have been proposed for finite-horizon
Ex-BMDPs (Efroni et al. 2022a, 2022b; Mhammedi 2023), a method
which such guarantees has not yet been proposed in the reset-free
setting.

o State generalization/structured states:

* Existing Ex-BMDP algorithms assume that every possible endogenous
latent state is frequently visited during training.

 There is a need to efficiently learn latent dynamics with combinatorial
structure.
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