Multistep Inverse Is Not All You Need

Alexander Levine¹, Peter Stone^{1,2}, and Amy Zhang¹

1: The University of Texas at Austin. 2: Sony AI. Correspondence to <u>alevine0@cs.utexas.edu</u>

Ex-BMDP Model (Efroni et al. 2022b) e_{t+1} e_{t-1} e_t x_{t-1} x_{t+1} x_t s_{t+1} s_{t-1} s_t a_{t+1} a_t a_{t-1}

- State $x \in X$ can be factored into:

 - Exogenous state $e \in \mathcal{E}$, stochastic, independent of actions (*noise*)
- Factorization is not known a priori, and s and e are not observed.

• Endogenous state $s \in S$, discrete, evolves deterministically according to actions

Representation Learning In Ex-BMDP Framework

- Dynamics on S can be inferred by counting
- Ignore/don't learn dynamics on \mathcal{E}

Representation Learning In Ex-BMDP Framework

- Why learn Control-Endogenous Representation?
 - Interpretability
 - Planning

Representation Learning In Ex-BMDP Framework

- Existing Methods:
 - Efroni et al. (2022a, 2022b), Mhammedi (2023): *finite-horizon* setting, learn separate encoders φ_t at each t.
 - Lamb et al. (2022): *infinite-horizon setting* with *no resets*
 - Bounded diameter assumption: ∀ s,s' ∈ S, d(s,s') ≤ D

AC-State (Lamb et al., 2022)

• "Multistep Inverse": predict a_t given $\phi(x_t)$, $\phi(x_{t+k})$, k:

$$\mathcal{L}_{\text{AC-State}}(\phi_{\theta}) := \min_{\substack{f \ k \sim \{1, \dots, D\} \ (x_t, a) \\ \theta \}^*}} \mathbb{E}_{\{\theta^{**} | \theta^{**} = \arg\min_{\theta} \mathcal{L}_{\text{AC-Stat}} \\ \theta^* := \arg\min_{\theta \in \{\theta\}^*} \|\text{Range}(\phi_{\theta})\|$$

$\mathbb{E}_{u_t,x_{t+k}} - \log(f_{a_t}(\phi_\theta(x_t),\phi_\theta(x_{t+k});k))$ $_{\rm te}(\phi_{\theta})\}$

• Must show that learned ϕ won't conflate two different states s, s' \in S.

AC-State (Lamb et al., 2022)

- Proof Sketch (re-framed):
 - For a,b \in S, Let "witness distance" W(a,b) be the minimum k such that $\exists c \in S$, such that a and b can both be reached from c in exactly k steps.

- Compare $P(a_t | s_t = c, s_{t+k} = a)$ vs. $P(a_t | s_t = c, s_{t+k} = b)$
- Distributions have *disjoint support!* Otherwise W(a,b) < k. Therefore ϕ must distinguish a, b.

• Bounded diameter: $\forall a, b \in S, W(a, b) \leq D \rightarrow k \sim U(\{1, ..., D\})$ steps is sufficient.

AC-State (Lamb et al., 2022)

- Proof Sketch (re-framed):
 - For a,b \in S, Let "witness distance" W(a,b) be the minimum k such that $\exists c \in S$, such that a and b can both be reached from c in exactly k steps.

- Compare $P(a_t | s_t = c, s_{t+k} = a)$ vs. $P(a_t | s_t = c, s_{t+k} = b)$
- Distributions have *disjoint support!* Otherwise W(a,b) < k. Therefore ϕ must distinguish a, b.

D Steps is Not All You Need b d Ý L/R \mathbf{a} С

D Steps is Not All You Need

D Steps is Not All You Need

- - state c or state d, but this representation doesn't show this

 AC-State with K=D=3 learns *incorrect* encoder that conflates c and d. • Encoder is incorrect, because we are able to control whether we're in

D Steps is Not All You Need

- In practice, D is not known a priori; max number of steps used is hyperparameter K.
- If not D, how many steps do we need?
- **Theorem**: If W(a,b) is finite, then W(a,b) $\leq 2D^2 + D$
 - Tight up to constant factor: we can construct dynamics where AC-State fails using $K = D^2/2 + O(D)$ steps for arbitrarily large D

D Steps is Not All You Need

- In practice, D is not known a priori; max number of steps used is hyperparameter K.
- If not D, how many steps do we need?
- Theorem: If W(a,b) is finite, then $W(a,b) \le 2D^2 + D$
 - Tight up to constant factor: we can construct dynamics where AC-State fails using $K = D^2/2 + O(D)$ steps for arbitrarily large D

Multistep Inverse is Not All You Need

Multistep Inverse is Not All You Need

 $t \equiv 0 \pmod{3}$ $t \equiv 1 \pmod{3}$ $t \equiv 2 \pmod{3}$

a

 \bullet endogenous latent representation.

Dynamics learned with AC-State (For any K) not deterministic: not a valid

ACDF

- New algorithm to fix AC-State: $\mathcal{L}_{\text{ACDF}}(\phi_{\theta}) := \min_{f} \mathbb{E}_{k \sim \{1, \dots, D'\}} \mathbb{E}_{\{x_t\}}$ $+\min_{g} \mathbb{E}_{(x_t,a_t,x_{t+1})} - \mathbf{b}$
- Where:
 - use D' := $2D^2+D$; in practice, a hyperparameter.)
 - Added latent forward model g: predict $\phi(x_{t+1})$ given $\phi(x_t)$ and a_t
- AC-State + D' + Forward model = ACDF
- Theorem (informal): Encoders which minimize ACDF loss encode a correct endogenous latent representation.

$$\mathbb{E}_{\substack{x,a_t,x_{t+k}}} -\log(f_{a_t}(\phi_{\theta}(x_t),\phi_{\theta}(x_{t+k});k)))$$

$$\log(g_{\phi_{\theta}(x_{t+1})}(\phi_{\theta}(x_t),a_t)).$$

D is replaced by D', any upper bound on finite witness distances (can

Results: Tabular

Noise \mathcal{T}_e	AC-S	State	e Su	cces	ss R	ate	ACD	F Su	Icce	ss F	Rate	
	Env. steps:	200	400	800	1600	3200	Env. steps:	200	400	800	1600	3200
p=.75	<u>K=1</u>	0%	0%	0%	0%	0%	<u>K=1</u>	100%	100%	100%	100%	100%
25 ()	<u>K=2</u>	0%	0%	0%	0%	0%	<u>K=2</u>	100%	100%	100%	100%	100%
	<u>K=3</u>	0%	0%	0%	0%	0%	<u>K=3</u>	100%	100%	100%	100%	100%
	<u>K=4</u>	0%	0%	0%	0%	0%	<u>K=4</u>	100%	100%	100%	100%	100%
\sim	<u>K=5</u>	0%	0%	0%	0%	0%	<u>K=5</u>	100%	100%	100%	100%	100%
20	<u>K=6</u>	0%	0%	0%	0%	0%	<u>K=6</u>	100%	100%	100%	100%	100%
	<u>K=7</u>	76%	100%	100%	100%	100%	<u>K=7</u>	100%	100%	100%	100%	100%
	Env. steps:	1000	2000	4000	8000	16000	Env. steps:	1000	2000	4000	8000	16000
	<u>K=10</u>	0%	0%	0%	0%	0%	<u>K=10</u>	0%	2%	0%	0%	0%
	<u>K=13</u>	0%	0%	0%	0%	0%	<u>K=13</u>	0%	12%	22%	64%	96%
	<u>K=16</u>	0%	0%	0%	0%	0%	<u>K=16</u>	0%	22%	96%	100%	100%
)	<u>K=19</u>	0%	0%	2%	0%	0%	<u>K=19</u>	0%	12%	88%	100%	100%
	<u>K=22</u>	0%	0%	2%	54%	98%	<u>K=22</u>	0%	0%	68%	100%	100%
	<u>K=25</u>	0%	0%	0%	18%	80%	<u>K=25</u>	0%	0%	42%	98%	100%
	<u>K=28</u>	0%	0%	0%	4%	38%	<u>K=28</u>	0%	0%	32%	98%	100%
p=.75	Env. steps:	100	200	400	800	1600	Env. steps	: 100	200	400	800	1600
$15 \cap$	<u>K=1</u>	0%	0%	0%	0%	0%	<u>K=</u>	30%	14%	12%	8%	6%
	<u>K=2</u>	0%	0%	0%	0%	0%	<u>K=</u> 2	<u>9</u> 2%	100%	100%	100%	100%
(1)	<u>K=3</u>	0%	0%	0%	0%	0%	<u>K=</u> ;	86%	98%	100%	100%	100%
25	<u>K=4</u>	0%	0%	0%	0%	0%	<u>K=</u> 4	84%	98%	100%	100%	100%
10												
p = .75	Env. steps:	100	200	400	800	1600	Env. steps	100	200	400	800	1600
$5 \land$	K=1	0%		0%	0%	0%	<u>K=1</u>	98%	100%	100%	100%	100%
	<u></u> K=2	74%	100%	100%	100%	100%	<u>K=2</u>	91%	100%	100%	100%	100%
γ_1)	K=3	24%	70%	100%	100%	100%	<u>K=3</u>	68%	100%	100%	100%	100%
	K=4	4%	19%	74%	97%	100%	<u>K</u> =4	18%	88%	100%	100%	100%
5	<u>17=4</u> K-2	- 70 0%	0%	44%	97%	100%	<u>K=</u> 5	4%	50%	98%	100%	100%
	<u>~=5</u>	0%	0%	44 %	92%	100%						

Results: Deep Learning

- Gridworld-like maze navigation task and network architecture from released code of Lamb et al. (2022).
- Compared original maze environment to a *periodic* variant of the environment, and original AC-State loss function to ACDF.
- Evaluation based on success of encoder for open-loop planning.

	Baseline/AC-State	Baseline/ACDF	Periodic/AC-State	Periodic/ACDF
Success Rate	20/20 training runs	20/20 ""	1/20 ""	19/20 ""

Results: Deep Learning

Future Work

- Sample-complexity guarantees:
 - Neither AC-State nor ACDF have sample-complexity guarantees.
 - While sample-efficient algorithms have been proposed for finite-horizon Ex-BMDPs (Efroni et al. 2022a, 2022b; Mhammedi 2023), a method which such guarantees has not yet been proposed in the reset-free setting.
- State generalization/structured states:
 - Existing Ex-BMDP algorithms assume that *every possible* endogenous latent state is frequently visited during training.
 - There is a need to efficiently learn latent dynamics with combinatorial structure.

References

- Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford. Sample-efficient reinforcement learning in the presence of exogenous information. COLT. 2022a.
- Provably filtering exogenous distractors using multistep inverse dynamics. ICLR. 2022b. Foster, Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-endogenous latent states with multi-step inverse models. TMLR. 2022. multi- step inverse kinematics: An efficient and optimal approach to rich-observation rl.
- Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. • Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J • Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with ICML. 2023.