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The model of preference

(Shorthand notation above leaves out from P and f an implied 
reward function as input.)



Learning a reward function from preferences

Given a preference model      , 

optimize r to maximize the likelihood of the preferences dataset.}



preferences 
dataset

preferences sampled from a 
preference model

MLE with a preference model

Typical RLHF algorithm's view of the world
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Common model: Partial return

The preference model

Proposed model: Regret

The regret of a segment measures how much it deviates from 
optimal behavior.



Partial return

The preference model

Regret
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Comparisons

Theoretically superior (identifiable)

With human preferences
● more descriptive
● learns more aligned reward functions



Then why does the partial return preference 
model work so well for fine-tuning?



Then why does the partial return preference 
model work so well for fine-tuning?

This paper answers in two contexts:

1) RLHF generally

2) RLHF fine tuning for LLMs



When regret drives preferences but the 
dominant model is assumed 
(i.e., using      as   )

Outline:
● When       is known exactly
● When       is approximated
● Reframing RLHF for LLMs



Assuming the partial return 
preference model when regret 
is correct

(Learning      and using it as   )



A unified representation of the preference 
models

Regret:

Partial return:

If you assume partial return but preferences are by regret, then you are 
using (an approximation of) A* as a reward function.

Unification:
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A unified representation of the preference 
models

Regret

Partial return

Unification
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Using 
      as reward



Optimal policies are preserved.

Intuition:

so:

Therefore a trajectory gets maximal return under r' iff that trajectory is optimal w.r.t. r.

The set of optimal policies under    and                     is the same, 
regardless of the discount factor used with       .



Reward is highly shaped.
From Ng, Harada, and Russell's 1999 paper on potential-based shaping: 

With some algebra, we find that this definition of the potential function makes 
Ng et al.'s shaped reward function                  , the optimal advantage function 
with respect to    !



However, for                     ,        

so γ has no impact on the set of optimal policies.

An underspecification issue is resolved.

When segment lengths |σ| are 1:

Preferences training set generated via partial return
Reward function learned via partial return

The set of optimal policies
The choice of γ during policy optimization

Affected by the γ in the human's mind?

No
No
Yes

Not without dataset augmentation



If we have       , then why do policy improvement to get the same policy 
as                                                       ?

Policy improvement wastes computation 
and environment sampling.



Using       , an 
approximation of       ,
as reward



If the max of       in every state is 0, behavior is identical 
between                    and                       .

Across 90 small gridworld tasks

I.e., while         might not be optimal, treating       as a reward function does not worsen (or improve) 
performance if the condition above is met.

Proof is in the paper. Empirical validation:



But the max of       in every state is not generally 0.

The likelihood is not affected by arbitrary shifts, so we should generally expect that 

                                 . 

More generally, in variable horizon tasks, such constant shifts to reward can create 
catastrophic changes to the set of optimal policies. How can we reduce this issue?



An ameliorative tactic: include segments 
with transitions from absorbing state

Absorbing state - turns episodic tasks into continuing (infinite) ones

A simple episodic MDP
-1
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0



An ameliorative tactic: include segments 
with transitions from absorbing state

Results from 30 gridworld MDPs



An ameliorative tactic: include segments 
with transitions from absorbing state
Transitions from absorbing state push the maximum per state towards 0.

Results from the same 30 gridworld MDPs





Reward is also highly shaped with 
approximation error

For 100 MDPs, 
each        learned 
with 100K 
noiselessly 
generated 
preferences



Is using      as reward advised?

No! 
But it's not as bad as we would have expected (if a pitfall is addressed).



Using       as reward when 
fine-tuning LLMs with RLHF



Our hypothesis

annotators give regret-based preferences 

and 

engineers using fine-tuning are unknowingly 
applying the regret preference model



Optimal policies are preserved.

Reward is highly shaped.

(But with approximation error, there is one large issue.)

When A* is learned without error...



Mapping this to the previous content
● They assume the partial return preference model.
● Segment length is 1.
● State is the full observation history.
● The next state is not in the segment and not an input to    . 
● A ranking of n responses is turned into many preferences 

(precisely (n2-n)/2 preferences).
● Τheir "reward model" is our .

The same approach is used for DeepMind's Sparrow (Glaese et al., 
2022), Llama 2 (Touvron, 2023), and other influential work (Ziegler et 
al., 2019 and Bai et al.; 2022).

Ouyang et al., 2022

Fine-tuning InstructGPT (and ChatGPT)



…
observation action observation actionRL framing:

LM framing:

R(s,a):
observation action

r0 r1 r2

The multi-turn language problem

● Assumes the partial return preference model.
● Segment length is 1.
● Learned reward function is applied as if in a bandit task!!!!

On InstructGPT (Ouyang et al., 2022)

human's 
prompt

human's 
prompt

LM's 
response

LM's 
response

human's 
prompt

LM's 
response



But the multi-turn problem is not a bandit problem!

The multi-turn language problem

…

human's 
prompt

human's 
prompt

LM's 
response

LM's 
response

observation action observation actionRL framing:

LM framing:

R(s,a):

human's 
prompt

LM's 
response

observation action
r0 r1 r2

 This bandit usage of a 
reward function is 
counterintuitive, is 
unexplained, and 
confuses many people.

Partial return assumes learned 
function approximates r.

Must assume γ=0

bandit task



Regret
Assumes the learned function approximates A*.
No γ hyperparameter.

We get the same fine-tuning algorithm with a better supported 
preference model and without the arbitrary assumption of γ=0!



Preference elicitation interfaces

Bai et al., 2022



So what?
The algorithm is the same.



When segment length > 1 and γ=0, the partial return 
preference model nonsensically ignores all actions after the 
first. 

● Regret results in a different algorithm that appears 
reasonable.

A clearer understanding will bear fruit later.



Contrastive Preference Learning: 
Learning from Human Feedback without RL
Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, Dorsa Sadigh



Learning optimal advantage from preferences 
and mistaking it for reward

(AAAI 2024)

The paper

Common model
Partial return

Proposed model
Regret


