Learning Optimal Advantage from
Preferences
and Mistaking it for Reward

W. Bradley Stephane Sigurdur Orn Serena
Knox'* Hatgis-Kessell'!  Adalgeirsson® Booth? Niekum?®
[E]
'UT Austin 2MIT CSAIL 3Sony Al
4Google Research SUC Berkeley

5UMass Amherst



The model of preference

exp [f(o1)]

P(o1>09)=

exp [f(o1)]+exp [f(o2)]
=logistic(f(o1)— f(02))

(Shorthand notation above leaves out from P and f an implied
reward function as input.)

flo1)—f(o2)



Learning a reward function from preferences

Given a preference model P(oy > o3]|f),

optimize r to maximize the likelihood of the preferences dataset.



Typical RLHF algorithm's view of the world

preferences
dataset
preferences sampled froma
preference model ] e '
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The preference model

Common model:

P(oy > 03) =logistic( » 1 (s,a) = Y 1 (s,a))
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The preference model

Common model:

P(o1 > o2) = logistic( Z (s,a) — Z (s,a))

(s,a)€01 (s,a)Eo02
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The preference model

Common model:

P(o1 > 02) = logistic( Z (s,a) — Z (s,a))
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The preference model

Common model:

P(o1 > 02) = logistic( Z (s,a) — Z (s,a))
(s,a)€E01 (s,a)E02

Proposed model: Regret

P(o1 > 03) = logistic( ZA::(S, a) — ZA;‘:(S, a) )
(s,a)Eo1 (s,a)€o2

The regret of a segment measures how much it deviates from
optimal behavior.



The preference model

Regret
P(oy > o) = logistic( ) | (s,a) = > 1 (s,a)) P(o1 = 03) = logistic( Y _ Ax(s,a) — > Al(s,a))
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The preference model

Proposed model: Regret
P(o1 > 02) = logistic( ZA;E(S, a) — ZA;’f(s, a) )
(s,a)E01 (s,a)Eo09

Showing optimal advantage
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The preference model

Showing optimal advantage
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Proposed model: Regret

P(o1 > 02) = logistic( ZA;E(S, a) — ZA;’f(s, a) )

(s,a)€01 (s,a)€02



Comparisons

Theoretically superior (identifiable)

With human preferences
e more descriptive
e learns more aligned reward functions



Then why does the partial return preference
model work so well for fine-tuning?



Then why does the preference
model work so well for fine-tuning?

This paper answers in two contexts:
1) RLHF generally
2) RLHF fine tuning for LLMs



When regret drives preferences but the

dominant model is assumed
(i.e., using A as 1)

Outline:

e When A’ is known exactly
e When A’ is approximated
e Reframing RLHF for LLMs



Assuming the partial return
preference model when regret
Is correct

(Learning A .and using it as 1)



A unified representation of the preference

models o
P(o1 = 09) = logzstzc(f(al) — f(ag))

Partial return: f(o) = discounted sum of r(s, a) for each (s,a) in o
Regret: f(o) = discounted sum of A*(s,a) for each (s,a) in o

. f(0) = discounted sum of g(s, a) for each (s,a) in o

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.



A unified representation of the preference

models
P(o1 >~ 02) = logistic(f(al) — f(ag))

|O’1|—1 |0’2|—1

= logistic( Z r(s7,a7y) — Z f(sf,a?)) Partial return
=0 t=0
lo1] =1 o2 =1

= logistic( Z A%(s?,a]) — Z A;(sg,a§)> Regret
t=0 t=0

lo1]—1 lo2|—1

= logz’stic( Z g(sf,a7) — Z g(sg,af))
t=0 t=0

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.



A unified representation of the preference
models

P(o1 > 02) = logistic

01| -1 |oa| -1
= logistic( Z r(s7,a7y) — Z f(sf,a?)) Partial return
=0 t=0
lo1|—1 loa|—1
= logistic( Z A%(s?,a]) — Z A;(sg,a§)> Regret
t=0 t=0
(01 —1 loa|—1



3 algorithms

Dataset created by
reward function 7" and

partial return
preference model

regret
preference model

regret
preference model
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learning g
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from preferences

s
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Additional step to create policy
(other than greedy action selection)

policy improvement

policy improvement
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4 algorithms

Dataset created by  Algorithm for learning
reward function 7" and from preferences
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4 algorithms
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4 algorithms greedy ¢ 7E:

Assumed
Dataset created by Algorithm for learning AOutput of learning Additional step to create policy
reward function 7" and from preferences from preferences (other than greedy action selection)
regret .
i -partialreturn-  leaming g ,",\, policy improvement Ak
. preference model T |
e regret learning g ; i . AR
' preference model : AT 7T7” :



Using
A’ as reward



Optimal policies are preserved.

The set of optimal policies under 7and 1 4 = A’ is the same,
regardless of the discount factor used with 7 4+.



Reward is highly shaped.

From Ng, Harada, and Russell's 1999 paper on potential-based shaping:

about the domain. As to how one may do this, Corol-
lary 2 suggests a particularly nice form for @, if we
know enough about the domain to try choosing i
such. We see that if ®(s) = V;;(s) P(sg) =0
in the undiscounted case), then Equation (4) tells us
that the value function in M’ is V. (s) = 0 — and

Set ® 2 V*.,

Ty

With some algebra, we find that this definition of the potential function makes
Ng et al's shaped reward function T Ax £ A7, the optimal advantage function

with respect to r!



An underspecification issue is resolved.

o] -1
“r(st,ar) = 7"r(s0, a0) = (50, ao)
When segment lengths lol are 1: 7 rist, ar) =7 T{S0,d0) = TS0, 40
t=0
Affected by the y in the human's mind?
Preferences training set generated via partial return No
Reward function learned via partial return No
The set of optimal policies Yes
The choice of y during policy optimization Not without dataset augmentation

A
However, for 74 = A7,
™

a trajectory is optimal <= its discounted sum of A7 (s,a) values is 0

so Y has no impact on the set of optimal policies.



Policy improvement wastes computation
and environment sampling.

If we have A;':, then why do policy improvement to get the same policy
as m.(s) = argmax,A(s,a)?



Using A
apprOX|mat|on of A
as reward



If the max of A¥ in every state is 0, behavior is identical
between greedy A* and greedy Q;’iﬁ.

Proof is in the paper. Empirical validation:

Across 90 small gridworld tasks

—— greedy A*
— greedy Q7.

. A
e,z = Ar,
where max,A*(-,a) = 0

Mean return

10 100 1000
Preferences per training set

l.e., while A% might not be optimal, treating A*as a reward function does not worsen (or improve)
performance if the condition above is met.



But the max of A;‘i in every state is not generally O.

Let ¢'(s,a) = g(s, a) + constant.

lo1[—1 lo2]—1 lo1]—1 lo2| -1
Then logz’stic( Z g(sf,a?) — Z g(s?,a?)) = logistic( Z q'(s7,a]) — Z g’(sf,a‘t’)).
+=0 t=0 t=0 +=0

The likelihood is not affected by arbitrary shifts, so we should generally expect that

maxajl\;i(s, a) # 0.

More generally, in variable horizon tasks, such constant shifts to reward can create
catastrophic changes to the set of optimal policies. How can we reduce this issue?



An ameliorative tactic: include segments
with transitions from absorbing state

A simple episodic MDP

1 1
<>:<)—’ Terminal
1

Absorbing state - turns episodic tasks into continuing (infinite) ones




An ameliorative tactic: include segments
with transitions from absorbing state

Noiselessly generated preferences

greedy Qf,
o 100% s (A )
Q pr R .
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< 0 - e s
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Results from 30 gridworld MDPs



An ameliorative tactic: include segments
with transitions from absorbing state

Transitions from absorbing state push the maximum per state towards O.

Noiselessly generated preferences

|| Includes

transitions from
absorbing state

(& 20 X ] No transitions
S from absorbing
o]

E 0 ‘ ' % %S- state

300 1,000 3,000 10,000 30,000 100,000
Preferences per training set

Results from the same 30 gridworld MDPs



greedy Q7. return —
greedy A* return

Table 1: Hypothesis regarding which algorithm performs
as well or better than the other, given 2 conditions.

Condition Fio8 m,. does not
terminates terminate
Max loop partial return > 0 | greedy Qr, | greedy A;
Max loop partial return < 0 | greedy A greedy Qr
20 e - MDP in which 77
| terminates
Lf | MDP in which 7
i does not terminate
O OCEEEENGD : 1000 @ (- ©E-DOSNII ISP PO (© 00 © o °
1t .
_2 L Ih-.m-uwl ° X . 1
0 20 40 60 80

Maximum loop return



Reward is also highly shaped with
approximation error

1.0 e o o rwm

=
’é* 0.5 For 109\MDPS,
O each A* learned
8 —— Qlearning with r - 7 with 100K
§ 0.0t . . N noiselessly

—— Q learning with r,, ---- greedy A* generated

. . : 5 references
—— Q learning with rz - 7r;f;ﬁ from value iteration "

0 200 400 600 800 1000 1200 1400 1600
Episodes



Is using A*as reward advised?

No!

But it's not as bad as we would have expected (if a pitfall is addressed).



Using A’ as reward when
fine-tuning LLMs with RLHF



Our hypothesis

annotators give regret-based preferences
and

engineers using fine-tuning are unknowingly
applying the regret preference model



When A* is learned without error...

Optimal policies are preserved.

Reward is highly shaped.

(But with approximation error, there is one large issue.)



Fine-tuning InstructGPT (and ChatGPT)

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model e
Explain the moon
outputs are landing to a 6 year old
sampled. o o
E gravity. Expl

eeeeeeeeeeeeeeeeeeeeeeeee

A labeler ranks

the outputs from @
best to worst.
0-0-0-0

\J
This data is used 5

to train our O
./.)s\\.
reward model. W

0-0-0-0

Ouyang et al.,, 2022

Mapping this to the previous content
e They assume the partial return preference model.
e Segmentlengthis 1.

e $3

The same approach is used for DeepMind's Sparrow (Glaese et al.,
2022), Llama 2 (Touvron, 2023), and other influential work (Ziegler et
al.,, 2019 and Bai et al.; 2022).



The multi-turn language problem

human's LM's human's LM's human's LM's
LM framing: prompt response prompt response prompt response
I
RL framing: observation action observation action observation action
R(s,a): r r, r,

e Assumes the partial return preference model.
e Segmentlengthis .
e |earned reward function is applied as if in a bandit task!!!!

On InstructGPT (Ouyang et al., 2022)

Reinforcement learning (RL). Once again following Stiennon et al.|(2020), we fine-tuned the
SFT model on our environment using PPO (Schulman et al., 2017). The environment is a bandit
environment which presents a random customer prompt and expects a response to the prompt. Given
the prompt and response, it produces a reward determined by the reward model and ends the episode.




The multi-turn language problem

LM framing:

RL framing:
R(s,a):

human's LM's human's LM's human's LM's

prompt response prompt response prompt response
I
observation action observation action observation action

rO r1 r2

But the multi-turn problem is not a bandit problem!

assumes learned 7 (s) = argmaz, Q) (s, a)

function approximates r. = argmaz,(r(s,a) +vE«[V*(s)])

= argmaz, r(s,a) <— bandit task



Regret

Assumes the learned function approximates A*.
No y hyperparameter.

7 (s) = argmax, Al (s,a)

We get the same fine-tuning algorithm with a better supported
preference model and without the arbitrary assumption of y=0!



Preference elicitation interfaces

& Human
Playground task @ I have to come up with a conversation with an Al assistant for the purposes of showing it off in a demo. What sorts of conversation

Talk to the el ™ Choose the most helpful and honest response

W@ Assistant

2

assistant | think the best topics for conversation are common themes and interests that everyone could have. Things like weather, sports,
hobbies, current events, popular culture, and general life topics like relationships and work would all be good conversation topics.

Task10f & You could also have more advanced conversations discussing philosophy and morality if you want to demonstrate some higher level
Al capabilities

Decide on a task you'd like

the assistant to help with &  Human
and enter it into the task I think I'm more interested in an advanced conversation. What's a good starter question if | wanted to discuss somegj
Box! nteract with thaAl philosophical, like epistemology or the nature of language?

assistant. When you're @ Assistant
finished, select a final I think an excellent philosophical topic would be epistemology, which is the theory of knowledgge#nd specifically how we can know
response from the assistant and understand the world around us. A really good starting question would be something j# How can we truly know and

understand the world?", or "What is the nature of knowledge?". If you want to go evga#eper, | think philosophy of language would
also be fascinating - questions like "What is meaning?”, "How do language ang#8ught relate?", and "How can language mislead and
deceive?" would be great discussion topics.

and leave a comment on
how the assitant did in the
comment box. Click to go to

the next task. #  Human
flthought relate?
Comments
| thought the assistant was ... %) Choose the most helpful and honest response
1 think a good answer to that would be that lanauage Helps us to structure our thoughts and express what we are thinking. Language
. gives us a symbolic system of signs and meanings that we use to communicate our ideas and make sense of the world. It's critical for
4 how we record and relate and | think it's i ible to and express our thoughts without the use of
Ratiog language. Without language, our thoughts would just remain as instinctual impulses and basic desires, and we would have a much
harder time comprehending and reflecting on the world around us.
O OIO:OMC)
Bad Good

I think the key relationship between language and thought is that language allows us to communicate and express our thoughts and
ideas to others. Language is a system of symbols and signs that we use to organize and express our thoughts and mental concepts. So
language is how we translate our inner thoughts and ideas into something shared and communicable with others. Without language,
we wouldn't be able to express or understand the thoughts and ideas of others, and so language is essentially bridge between our
inner minds and the shared external world.

B
Bis better

Figure 6 We show the interface that crowdworkers use to interact with our models. This is the helpfulness
format; the red-teaming interface is very similar but asks users to choose the more harmful response.

Bai et al., 2022



So what?
The algorithm is the same.




When segment length > 1 and y=0, the partial return
preference model nonsensically ignores all actions after the
first.

e Regret results in a different algorithm that appears
reasonable.

A clearer understanding will bear fruit later.



Contrastive Preference Learning:
Learning from Human Feedback without RL

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, Dorsa Sadigh
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Common model P(01 - 02) — logistic( Z (S,CL) — Z (S,a))

(s,a)E01 (s,a)Eo02
Proposed model _ « .
P Regret P(0q > 03) = logistic( ZAT(S, a) — ZAT(S, a))
(s,a)Eo01 (s,a)E09
The paper

Learning optimal advantage from preferences
and mistaking it for reward
(AAAI 2024)



