
1UT Austin 2MIT CSAIL 3Sony AI
4Google Research 5UC Berkeley

6UMass Amherst

Learning Optimal Advantage from
Preferences

and Mistaking it for Reward

W. Bradley
Knox1,4

Peter
Stone1,3

Scott
Niekum6

Serena
Booth2

Stephane
Hatgis-Kessell1

Sigurdur Orn
Adalgeirsson4

Anca
Dragan5

The model of preference

(Shorthand notation above leaves out from P and f an implied
reward function as input.)

Learning a reward function from preferences

Given a preference model ,

optimize r to maximize the likelihood of the preferences dataset.}

preferences
dataset

preferences sampled from a
preference model

MLE with a preference model

Typical RLHF algorithm's view of the world

Common model: Partial return

The preference model

Common model: Partial return

The preference model

GOAL GOAL

-1

-1

-1

-1

Indifferent!

GOAL GOAL

Equal partial return
Lower end state value

Equal partial return
Higher end state value

Suboptimal segment Optimal segment

GOALGOAL

Equal partial return
Higher start state value

Equal partial return
Lower start state value

Suboptimal segment Optimal segment

Common model: Partial return

The preference model

Common model: Partial return

The preference model

Proposed model: Regret

The regret of a segment measures how much it deviates from
optimal behavior.

Partial return

The preference model

Regret

GOAL GOAL

-1

-1

-1

-1 GOAL GOAL

-2

-2

0

0

Showing reward Showing optimal advantage

Indifferent Preferred

The preference model

Proposed model: Regret

GOAL GOAL

-2

-2

0

0

Showing optimal advantage

Preferred

The preference model

Proposed model: Regret

GOAL GOAL

-2

-2

0

0

Showing optimal advantage

Preferred

Comparisons

Theoretically superior (identifiable)

With human preferences
● more descriptive
● learns more aligned reward functions

Then why does the partial return preference
model work so well for fine-tuning?

Then why does the partial return preference
model work so well for fine-tuning?

This paper answers in two contexts:

1) RLHF generally

2) RLHF fine tuning for LLMs

When regret drives preferences but the
dominant model is assumed
(i.e., using as)

Outline:
● When is known exactly
● When is approximated
● Reframing RLHF for LLMs

Assuming the partial return
preference model when regret
is correct

(Learning and using it as)

A unified representation of the preference
models

Regret:

Partial return:

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.

Unification:

A unified representation of the preference
models

Regret

Partial return

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.

Unification

A unified representation of the preference
models

Regret

Partial return

Unification

3 algorithms

3 algorithms

4 algorithms

regret

Assumed

^

4 algorithms

regret

Assumed

^

4 algorithms

regret

Assumed

^

4 algorithms

regret

Assumed

^

Using
 as reward

Optimal policies are preserved.

Intuition:

so:

Therefore a trajectory gets maximal return under r' iff that trajectory is optimal w.r.t. r.

The set of optimal policies under and is the same,
regardless of the discount factor used with .

Reward is highly shaped.
From Ng, Harada, and Russell's 1999 paper on potential-based shaping:

With some algebra, we find that this definition of the potential function makes
Ng et al.'s shaped reward function , the optimal advantage function
with respect to !

However, for ,

so γ has no impact on the set of optimal policies.

An underspecification issue is resolved.

When segment lengths |σ| are 1:

Preferences training set generated via partial return
Reward function learned via partial return

The set of optimal policies
The choice of γ during policy optimization

Affected by the γ in the human's mind?

No
No
Yes

Not without dataset augmentation

If we have , then why do policy improvement to get the same policy
as ?

Policy improvement wastes computation
and environment sampling.

Using , an
approximation of ,
as reward

If the max of in every state is 0, behavior is identical
between and .

Across 90 small gridworld tasks

I.e., while might not be optimal, treating as a reward function does not worsen (or improve)
performance if the condition above is met.

Proof is in the paper. Empirical validation:

But the max of in every state is not generally 0.

The likelihood is not affected by arbitrary shifts, so we should generally expect that

 .

More generally, in variable horizon tasks, such constant shifts to reward can create
catastrophic changes to the set of optimal policies. How can we reduce this issue?

An ameliorative tactic: include segments
with transitions from absorbing state

Absorbing state - turns episodic tasks into continuing (infinite) ones

A simple episodic MDP
-1

-1

-1

Terminal

-1

-1

-1

Absorbing

0

An ameliorative tactic: include segments
with transitions from absorbing state

Results from 30 gridworld MDPs

An ameliorative tactic: include segments
with transitions from absorbing state
Transitions from absorbing state push the maximum per state towards 0.

Results from the same 30 gridworld MDPs

Reward is also highly shaped with
approximation error

For 100 MDPs,
each learned
with 100K
noiselessly
generated
preferences

Is using as reward advised?

No!
But it's not as bad as we would have expected (if a pitfall is addressed).

Using as reward when
fine-tuning LLMs with RLHF

Our hypothesis

annotators give regret-based preferences

and

engineers using fine-tuning are unknowingly
applying the regret preference model

Optimal policies are preserved.

Reward is highly shaped.

(But with approximation error, there is one large issue.)

When A* is learned without error...

Mapping this to the previous content
● They assume the partial return preference model.
● Segment length is 1.
● State is the full observation history.
● The next state is not in the segment and not an input to .
● A ranking of n responses is turned into many preferences

(precisely (n2-n)/2 preferences).
● Τheir "reward model" is our .

The same approach is used for DeepMind's Sparrow (Glaese et al.,
2022), Llama 2 (Touvron, 2023), and other influential work (Ziegler et
al., 2019 and Bai et al.; 2022).

Ouyang et al., 2022

Fine-tuning InstructGPT (and ChatGPT)

…
observation action observation actionRL framing:

LM framing:

R(s,a):
observation action

r0 r1 r2

The multi-turn language problem

● Assumes the partial return preference model.
● Segment length is 1.
● Learned reward function is applied as if in a bandit task!!!!

On InstructGPT (Ouyang et al., 2022)

human's
prompt

human's
prompt

LM's
response

LM's
response

human's
prompt

LM's
response

But the multi-turn problem is not a bandit problem!

The multi-turn language problem

…

human's
prompt

human's
prompt

LM's
response

LM's
response

observation action observation actionRL framing:

LM framing:

R(s,a):

human's
prompt

LM's
response

observation action
r0 r1 r2

 This bandit usage of a
reward function is
counterintuitive, is
unexplained, and
confuses many people.

Partial return assumes learned
function approximates r.

Must assume γ=0

bandit task

Regret
Assumes the learned function approximates A*.
No γ hyperparameter.

We get the same fine-tuning algorithm with a better supported
preference model and without the arbitrary assumption of γ=0!

Preference elicitation interfaces

Bai et al., 2022

So what?
The algorithm is the same.

When segment length > 1 and γ=0, the partial return
preference model nonsensically ignores all actions after the
first.

● Regret results in a different algorithm that appears
reasonable.

A clearer understanding will bear fruit later.

Contrastive Preference Learning:
Learning from Human Feedback without RL
Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W. Bradley Knox, Dorsa Sadigh

Learning optimal advantage from preferences
and mistaking it for reward

(AAAI 2024)

The paper

Common model
Partial return

Proposed model
Regret

