Improvements:
e Reduce content
e Provide example each of the preference elicitation interface for ChatGPT (or
InstructGPT) and Christiano et al.
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Research on aligned reward specification

Manual reward design (how it's usually done)

e Reward (mis)design for autonomous vehicles (AlJ 2023; arxiv 2021)
e The Perils of Trial-and-Error Reward Design: Misdesign through
Overfitting and Invalid Task Specifications (AAAI 2023)

Reward inference
e The EMPATHIC framework for task learning from implicit human

feedback (CoRL 2020)
e Models of human preference for learning reward functions (arxiv 2022)
e Learning Optimal Advantage from Preferences and Mistaking it for this talk

Reward (under review)


https://www.bradknox.net/reward-misdesign/
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/booth2023perils.pdf
https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/booth2023perils.pdf
https://sites.google.com/corp/utexas.edu/empathic
https://sites.google.com/corp/utexas.edu/empathic
https://www.bradknox.net/human-preference/

A model of human preference
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A model of human head motion

Bulgaria

Service Is the
proposal Service
desired?

Take your
car for an
oil change?

Take your
child
swimming?




A key part of the current model for
what drives human preferences in
sequential tasks is unstudied and
unvalidated.

Regret is an improved preference
Takeaways ;

model that measures a segment's

deviation from optimality.

The model of human preference is
a critical piece for alignment.




BACKGROUND ON REWARD

e _ i Z=1)

(7) =2 _4—q1 " 7r(St,as, 5t41)
: \ } \

Field Y Y

reinf. learning return reward

motion planning -1 x cost -1 x cost

control theory -1 x cost -1 x cost

evolutionary algs. fitness -

utility theory utility -

optimization objective* -

- performance metric -

- score -

* “Objective” more precisely refers to the goal of maximizing or minimizing the expectation of G(1).
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Preferences over segment pairs

Which shows better behavior?

GOAL

or

GOAL

A—IV

o

GOAL

GOAL

Preference elicitation

(or generation)

>

Preferences dataset




Learning a reward function from preferences

Given a preference model P(o1 = o2|f),

optimize r to maximize the likelihood of the preferences dataset.



Learning a reward function from preferences

Emmlet]

Given a preference model P(o1 = o2|f),

optimize r to maximize the likelihood of the preferences dataset.

\ Likelihood as cross entropy loss

loss(7, Dy ) = Z p1log P(o1 = 02|F) + p2log P(o1 < 02]7)
(01,02,n)ED



Why preferences?

e Established technique in reward learning

e |[ntuitive for humans

e Judgment may be easier than control

e Connects to expected utility theory

e /nideal settings, the reward function underlying the preferences can

be recovered



(Trajectory)

GOAL

Segment o



(Trajectory)
segment
notation

GOAL

A—-’

‘ + Segment o

lol =3

e The segmentlength
e The number of transitions in
the segment




(Trajectory)

GOAL

A—-’

" Y

Segment o

GOAL

o9

GOAL

|ol

=3

The segment size
The number of transitions in

the segment

GOAL

b

A
Ot = (Sa,t7 Qg t, Sa,t+1)

00 — (30,07 Qg.0, 80,1)

g1 = (30 1,Q0,15 So, 2)

02 = (30 2,052, S 3)

= (50,2) 00,2, Sa,lal)



(Trajectory)
segment notation

(30,07 Qg.0, 80,1)

o9

GOAL
GOAL

-
AT Segment o .".

(30,17 Qg 1, 30,2)

" Y

lol =3 GOAL

e The segment length (S a o )
e The number of transitions in 0,2y, %0,25 90,3

the segment (80,2, Ag,2, Sa,|a|)

b




Learning a reward function from preferences
(related work)

Christiano et al., 2017 - deep reward function representations



Learning a reward function from preferences
(related work)

Fine-tuning large language models (LLMs)

. ChatGPT




Learning a reward function from preferences
(related work)

Sadigh et al., 2017 - active learning

I

Emmlet]

Given a preference model P(o; = os|f),

optimize r to maximize the likelihood of the preferences dataset.

/

Christiano et al., 2017 - deep reward Lee et al. 2021 - benchmark for learning from preferences
Wang et al. 2022 - extracting skills too from preferences

Ibarz et al., 2018 - add demonstrations Lee et al. 2022 - pre-training and reward-relabeled replay

Biyik et al. 20217



Models of human preference
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o Preference models

o Identifiahility theory of preference
models

e Performance with each preference model

2nd half: When our proposed model drives
preferences but the dominant model is assumed



Models of
human
preference




The missing piece: the model of preference

CXp [f(o-l)] S
P(o1>02)=
exp [f(o1)]+exp | f(o2)]
=logistic(f(o1)— f(o2))
(Shorthand notation above leaves out from P and f an implied fo1)=f(a2)

reward function as input.)



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Current dominant model:
Partial return o|—1

Z 'Vtr(stv a’t)
t=0

f(o) = discounted sum of reward in o,

Partial return is assumed by all related work | covered.
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The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Partial return: f(o) = discounted sum of reward in o

Which shows better behavior?

end state
end state (safe)

(crash imminent) 1
------- Bl
0sumof | "mmmmmmmmm of reward
. for bumping
Partial return prefers the reward the wall

| start state start state
I eft se g me nt' (safe) (crash likely)

01 02




Problems with the partial return preference

model
P(oy = 02) = logistz’c(f(ol) — f(ag))

Partial return: f(o) = discounted sum of reward in o

Which shows better behavior?

Issue:

>

or A—
o [
R

Humans intuitively appear to consider state value and

decision quality. The partial return preference model does 7 72

not.

Let's address these concerns.



The missing piece: the model of preference

P(o1 = 02) = lOQ’iSt’iC<f(01) - f(02))

Proposed preference model: Regret

f(o) = —regret(o)

The regret of a segment is a measure
of its deviation from optimal
decision-making.



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret
f(o) = —regret(o)

lo| -1

regretq(o|F) = Z regretq(o¢|7) = Vi (so,0) = (BeT+VE (So,(0))
t=0

when all
transitions are
deterministic
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P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

lo|—1
regretq(o|F) = Z regretq(o|t) =V (se,0) —

(Eaf
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The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

lo|—1
regretq(o|r) = Z regretq(ot|7)=Vz (s5,0)— (XoT "‘VF*(SG,IUl)

/]

Partial return Best possible expected return
from the end state (i.e., by
optimal policy)

when all
transitions are
deterministic

N—"




The missing piece: the model of preference

when all
transitions are
deterministic

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

lo| -1

regrety(o|7) 2 Z regretq(o¢|r) =V

t=0

Best possible expected return from
the start state given the segment o

A

(

\

(SO',O) — (207‘:

VF*(SG,IUI)

)

g

Partial return

|

optimal po

Best possible expected return
from the end state (i.e., by

licy)



The missing piece: the model of preference

when all
transitions are
deterministic

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

lo| -1

regretq(o|F) £ Y regreta(o|F) =V

t=0

Best possible expected return from
the start state given the segment o

A

\

(55,0)

— (X7

VF*(SG,IUI)

)

/

Best possible expected return from
the start state (i.e., by optimal policy)

g

Partial return

|

optimal po

Best possible expected return
from the end state (i.e., by

licy)



What if transitions can be stochastic?

|o|—1
when all - ~ o~
varstons e regreta(o|F) £ ) regreta(o:|7) =V (50,0)— (SoT+VE (50,10))
t=0
o 100%, 0
The lottery: VS safe
)
lose
S




What if transitions can be stochastic?

o] -1
when all - o~ ~
t;ae:sei:risir:]sis?irce ’]”eg’)"etd (O'|'r') é E 'r'eg’l“etd (O't |’r) :%) o (Edr_l_va/,ldl ))
t=0

Best decision

100%, 0 S
o safe

The lottery:

Best outcome




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret
f(o) = —regret(o)

= sum of A*(s,a) for each (s,a) in o

lo| -1

> fregretd a'| Z regretd(ath“) (Sa 0) (EGF‘{"VF* (SU,|0|))
t=0

when all
transitions are
deterministic

lo|-1 lo| -1 lo|-1

regret(o|r)= Zregret o |F) = Z[ *(80,t) — Q5 sat,aat] Z —A%(S0.t,00,t)

t=0




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

= discounted sum of A*(s,a) for each (s,a) in o

Note: A*(s,a) £ Q*(s,a) — V*(s) and max,A)(s,a) =0 for all s



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Regret. f(o)= discounted sum of A*(s,a) for each (s,a) in o

Which shows better behavior?

Assume -1 reward per step GOAL GOAL
and no discounting. AT
or ‘
Regret prefers 0,. ‘_?

01 02



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Regret. f(o)= discounted sum of A*(s,a) for each (s,a) in o

Which shows better behavior?

Assume -1 reward per step OOiL GOAL
and no discounting. - —=
‘ or ‘
Regret prefers 0,.

01 02



The missing piece: the model of preference

P(oy > 02) = logistic( f(o1) — f(02)>

Regret. f(o) = discounted sum of A*(s,a) for each (s,a) in o

Precedent: in IRL, demonstrations are often assumed to noisily
optimal (Boltzmann rational with respect to the Q* function).

Main downside: Like IRL, learning reward with regret appears
to require solving an MDP in the inner loop of learning or an
approximation of doing so.



Theoretical
properties



Reward identifiability

Visual definition:

truthr — = P(oy = o3|r) —>

Ground %

[) 4_?‘

Equivalent
(same set of optimal policies) o )
Infinitely exhaustive
Learned 3 an algorithm that preferences dataset

r guarantees ...



Reward identifiability

Reward is identifiable with regret-based
preferences for any MDP.



Reward identifiability

Reward is not identifiable with preferences by partial
return, in multiple contexts:

e In variable-horizon tasks

e With segment lengths of 1

e Without Boltzmann noise in preference labeling



Reward identifiability

With partial el ol S
return, reward is

not generally

identifiable A)
without preference
noise that reveals

rewards' relative
proportions.




Reward identifiability

100%, O S 100%, O S
safe
S S
0 0
S
lose
S .
win
If rwin = 11, arisk is optimal. If ryin =9, Gsare is optimal.

Yet both create the same (noiseless) preferences!!



Reward identifiability

100%, 0 100%, 0 S

\)
. %V > Vsafe . 4 > Zsafe

\) Therefore, reward is not generally

identifiable with noiseless preferences from |§

partial return.

o717 W Yy . o9~ 9§ |
WINn WIin

If rwin = 11, 0,5k is optimal. If rywin =9, Gsase is optimal.

Yet both create the same (noiseless) preferences!!



Reward identifiability

Similarly, reward is not generally identifiable for inverse
reinforcement learning from (noiseless) demonstrations
of optimal behavior.



An algorithm for
reward learning
with estimated
regret




Learning a reward function from preferences

Given a preference model P(o1 = o2|f),

optimize r to maximize the likelihood of the preferences dataset.



Efficiently estimating value functions
P(o1 = 02) = lOQiStiC(f(Ul) - f(02))

Regret preference model
f(o) = —regret(o)

= discounted sum of A*(s,a) for each (s,a) in o

|of-1 o1 o] -1

regret(o|F) = Z regret(o¢|F) = Z [K:*(sa,t) (85,4500 } Z —A%(So.t,00.t)

We assume linear reward functions and use successor features
to quickly estimate Q* and V* for new reward parameters.



Learning reward
functions




Evaluating a learned reward function

Ground
truth 7r

— GOAL

GOAL

<

evaluated by

-
~ o ———
-~ =
- -
-~ —— —-——
o



Results, Pt. I
Learning reward
functions with




Evaluating a reward function
learned from synthetic preferences

—— T Reward learning with the
Pa rtial retu rn { L = . . GOA'II. — T == G:)AL pa rtial retU nm preference Value
Ground generates preferences L model Learned iteration
rL . > *
truth \ ® ~ T A
. <
- o -
T~~o_ Preferences dataset -
evaluated by
Regret {, T T Teoad | | | loon Reward learning with the Value
ner references it - regret preference model i -
Ground generates prefe . | A gretp . Learned teration N
truth e ® N T
. <
- o -
= Preferences dataset -~

-
-
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=
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—— -
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evaluated by
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-
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Evaluating a reward function learned from
synthetic preferences

Ground
truth r

Ground
truth r

Partial return
generates preferences

>

Regret
generates preferences

>

Reward learning with
the regret preference
model

‘ = GOAL

GOAL

-
e

o
PR

\

,f:

Reward learning with the
partial return preference

model

Preferences dataset

!

>
=
> ¥

Reward learning with
the regret preference
model

‘ = GOAL

GOAL

-
e

o
PR

,f:

\

Reward learning with the
partial return preference

model

Preferences dataset

!

>
=
> ¥

|
> ¥

|
> ¥



The delivery domain
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When each model is perfect, because it
creates its own preference dataset

S — Regret
g g g 80% (noiseless)
g E 2 — Partial return
A cé S 0% (noiseless)
: 0
E & s -- Regret
o S & (stochastic)
o .
2.z 40% -- Partial return
= l | (stochastic)

3710 30 100 300 1000 3000
Preferences per training set



% of MDPs in which
performance is near optimal

100%

80%r

60%¢

40%

30 100 300 1000 3000
# of preferences

Generator During learning
— Noiseless
Regret Stochastic
Regret . .
°6 Partial Noiseless
return Stochastic
Partial ~ —Noiseless
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% of MDPs in which
performance is near optimal

100%

80%r

60%¢

40%

30 100 300 1000 3000
# of preferences

Generator During learning
— Noiseless
Regret Stochastic
R t ) )
cgre Partial Noiseless
return Stochastic
Partial —Noiseless
Partial return -- Stochastic
return
— Noiseless
Regret .
g -- Stochastic

When each preference model is applied on data it created,
the regret preference model outperforms the partial return

model
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— Noiseless
Regret Stochastic
R . )
cgret Partial Noiseless
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100%
Generator

80%r
Regret

60%¢

Partial
return

% of MDPs in which
performance is near optimal

40%

3 10 30 100 300 1000 3000
# of preferences

When a preference model generates a dataset,

that same model produces the most aligned reward functions.

The correctness of

During learning
—Noiseless
Regret Stochastic
Partial Noiseless
return Stochastic
Partial —Noiseless
return -- Stochastic
— Noiseless
Regret .
g -- Stochastic



Results, Pt. II:
human-generated
preferences




A dataset of
human
preferences




The delivery task

&
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http://www.youtube.com/watch?v=V3hAqlE0qXg&t=293

Preference elicitation

F N
WHICH SHOWS
BETTER =
BEHAVIOR? s
. 2 2/u8
-



Human preferences visualized

|o|-1
Recall regrety(o|F) = Z regretq(o:|7) =|V7 (8,0)— (o7 iHVF (80,01))

- e /

Best possible expected return from the start Partial Best possible expected return from
state (i.e., by optimal policy) return the end state (i.e., by optimal policy)

Proportion
that prefer G,
@ 100%

® 33%
® 66%
® 50%
® 33%
® 16%
® %




Explaining human preferences with different
preference models

Preference model Loss
P(-)=0.5 (uninformed)  0.69
Ps. . (partial return) 0.62
- S—— 0.57

Mean cross-entropy test loss over 10-fold cross
validation (n=1812) from predicting human
preferences. Lower is better.



Learning reward
functions with

human
preferences




Evaluating a reward function
learned from human preferences

I
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.- Reward learning with Value T~
- the regret preference Learned 'teration *
PR ~ e T A
. model T r
//
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/ T L e S S S—
» Human e
references I§ pou] | [ ] e i
Ground P > T Reward learning with
truth 7 e ° the partial return
DR . <« preference model
~

S~ Preferences dataset
~~o. _ Value
~~o_ iterati
_____ Learned "eraton *
~~~~~~~~ 7 T
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Performance with random partitions of
human preferences dataset

100%L
80%
— Regret

— Partial
return

60%

= 40%

optimal

20%

% of partitions in which
performance is near

19 36 91 182 363 906 1812

(100) (50) (200 (10) (5) (@) (1)

Preferences per training set
(partitions)






Benefits of the regret preference model
(over the partial return model)

1.  Humans intuitively appear to consider state value. The regret preference
model also considers state value (in expectation).

2. Always prefers optimal segments over suboptimal segments, making it
reward identifiable with noiseless preferences or stochastic preferences.

3. More sample efficient
- when learning from its own preferences.
- when learning from human preferences.

4. When lol =1, the discount factor is considered, which is critical because the
discount factor and the reward function interact to determine the set of
optimal policies.



Results from past work

The regret preference model was superior by:
e Intuition / self-reflection
e Theory - reward identifiability
e Descriptive - gave a higher likelihood to our human preference dataset
e Performance of learned reward functions - both with human preferences
and when each model generates its own training set



Summary

e Critique partial return as a poor model of human preference

e A new preference model with regret(o) as the segment statistic

e Found that the regret preference model is superior by:

Intuition / self-reflection

Theory - reward identifiability

Descriptive - gave a higher likelihood to our human preference
dataset

Performance of learned reward functions - both with human
preferences and when each model generates its own training set

e We show that the choice of preference model impacts the performance of
learned reward functions.



Limitations and future work

e Efficient estimation of regret for complex tasks (including deep learning settings).

e Develop prescriptive methods to nudge humans to conform more to normatively
appealing preference models.

e Usage of the partial return preference model has had considerable success. Why?



Learning Optimal Advantage from
Preferences
and Mistaking it for Reward

W. Bradley Stephane Sigurdur Orn Serena Scott
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@
'UT Austin 2MIT CSAIL 3Sony Al
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If the partial return preference model is so bad...

why has using it performed so well in practice?



When regret drives preferences bhut

the dominant model 1s assumed
(i.e., using A*as )

e When A’ is known exactly
e When A is approximated
e Reframing RLHE for LLMs



Assuming the partial
return preference model
when regret is correct

(Learning A and using it as 1)



A unified representation of the preference
models
P(o1 = 03) = logz’stic( f(on) — f(02))
Partial return: f(o) = discounted sum of r(s, a) for each (s,a) in o
Regret: f(o) = discounted sum of A*(s,a) for each (s,a) in o

. f(0) = discounted sum of g(s, a) for each (s,a) in o

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.



A unified representation of the preference
models

P(oy > 02) = logistic(f(al) — f(ag))

|0'1|_1 |0'2|—1

= logistic( Z r(s7,a7y) — Z f(sf,af)) Partial return
=0 t=0
lo1] =1 o2 =1

= logistic( Z A%(s7,a7) — Z A}i(sf,af)) Regret
t=0 t=0

lo1]—1 lo2|—1

= logistic( Z g(s7,a7) — Z 9(8?,%‘?))
t=0 t=0

If you assume partial return but preferences are by regret, then you are
using (an approximation of) A* as a reward function.



A unified representation of the preference
models

P(o1 = 02) = lOQ’iStiC(f(01) - f(Uz))

o] =1 lo2| =1
= logz’stz’c( Z r(s7,a7y) — Z f(sf,a?)) Partial return
=0 =0
lo1]|—1 loa|—1
= logistic( Z A%(s?,a]) — Z A}i(sf,ag)) Regret
t=0 t=0

lo1|—1 lo2|—1

= logistic( Z g(s7,a7) — Z g(s?,a?))



3 algorithms

Dataset created by
reward function 7”7 and

partial return
preference model

regret
preference model

regret
preference model

Algorithm for learning
from preferences

learning g

learning by regret algorithm

learning g

Output of learning
from preferences

7

Additional step to create policy
(other than greedy action selection)

policy improvement

policy improvement
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4 algorithms

Dataset created by  Algorithm for learning
reward function 7" and from preferences

regret

partialretusn-  1€AMNING g

Assumed
AOutput of learning

from preferences

preference model

7

Additional step to create policy
(other than greedy action selection)

policy improvement
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Additional step to create policy
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policy improvement




4 algorithms

Assumed
Dataset created by Algorithm for learning AOutput of learning Additional step to create policy
reward function " and from preferences from preferences (other than greedy action selection)

i regret

i -partialreturn-  leaming g ,,':, policy improvement ~ 3k
i preference model r
i regret  learning g A ¥ ~ %
' preference model : r : 7T7“



4 algorithms greedy Q*Z;

Assumed
Dataset created by Algorithm for learning AOutput of learning Additional step to create policy
reward function " and from preferences from preferences (other than greedy action selection)
regret .
i -partialreturn-  leaming g ,,':, policy improvement Ak
. preference model T |
| regret  learning g Ak Ak |
i preference model i AT‘ i 7T7“ :



Using
A’ as reward



Optimal policies are preserved.

The set of optimal policies under 7and 1 4 = A7 is the same,
regardless of the discount factor used with r 4.



Reward is highly shaped.

From Ng, Harada, and Russell's 1999 paper on potential-based shaping:

about the domain. As to how one may do this, Corol-

lary 2 suggests a particularly nice form for @, if we Set & £ V.r.
know enough about the domain to tW

such. We see that if ®(s) = V;;(s) {with ®(sq) = 0

in the undiscounted case), then Equation (4) tells us

that the value function in M’ is V. (s) = 0 — and

With some algebra, we find that this definition of the potential function makes
Ng et al's shaped reward function T Ax £ A7, the optimal advantage function

with respect to r!



An underspecification issue is resolved.

o] -1
“r(st,ar) = 7"r(s0, a0) = (50, ao)
When segment lengths lol are 1: 7 T(St, ar) =7 TS0, d0) = TS0, 40
t=0
Affected by the y in the human's mind?
Preferences training set generated via partial return No
Reward function learned via partial return No
The set of optimal policies Yes
The choice of y during policy optimization Not without dataset augmentation

A
However, for rg» = A;k,,
™

a trajectory is optimal <= its discounted sum of A7 (s,a) values is 0

so Y has no impact on the set of optimal policies.



Policy improvement wastes computation and
environment sampling.

If we have A;'f, then why do policy improvement to get the same policy as

7 (s) = argmaxy, Ay (s,a)?



Using A% an .
approximation of Ar,
as reward




If the max of ;EE in every state is 0, behavior is
identical between greedy A and greedy QF__.
A*

Proof is in the paper. Empirical validation:

Across 90 small gridworld tasks

—— greedy A*
— greedy Q7.

. A
1.e., rz = Af,
where max,A*(-,a) = 0

Mean return

10 100 1000
Preferences per training set

l.e., while A;ﬁ might not be optimal, treating A;ﬁ as a reward function does not worsen (or improve)
performance if the condition above is met.



But the max of A;’i in every state is not generally O.

Let ¢'(s,a) = g(s, a) + constant.

lo1|—1 lo2|—1 lo1|—1 lo2|—1
Then logistz’c( Z g(sf,a?) — Z g(s?, a,g)) = logistic( Z g'(s],a7) — Z q'(s7, a‘{)).
+=0 t=0 t=0 +=0

The likelihood is not affected by arbitrary shifts, so we should generally expect that

mawa;ﬁ:(s, a) # 0.

More generally, in variable horizon tasks, such constant shifts to reward can create
catastrophic changes to the set of optimal policies. How can we reduce this issue?



An ameliorative tactic: include segments
with transitions from absorhing state

A simple episodic MDP

1 1
Q:Q—' Terminal
1

Absorbing state - turns episodic tasks into continuing (infinite) ones

-1 -1 :_ ______ :




An ameliorative tactic: include segments
with transitions from absorhing state

Noiselessly generated preferences

greedy Qr.

-------------------------------------------------- = o e e . e _A_ o
(e,rs = AY)

———————— — —Includes transitions
from absorbing state

—— No transitions from
absorbing state
greedy A*
—— Includes transitions
—— from absorbing state

% of MDPs in
which performance
is near-optimal

—

No transitions from

300 1,000 3,000 10,000 30,000 100,000 absorbing state
Preferences per training set

Results from 30 gridworld MDPs



An ameliorative tactic: include segments
with transitions from absorhing state

Transitions from absorbing state push the maximum per state towards O.

Noiselessly generated preferences

[ | Includes

transitions from
absorbing state

S !

=

(& 20 [ ] No transitions
S E B i. from absorbing
3 0 state
S 0 T

300 1,000 3,000 10,000 30,000 100,000
Preferences per training set

Results from the same 30 gridworld MDPs



greedy Q7. return —
greedy A* return

Table 1: Hypothesis regarding which algorithm performs
as well or better than the other, given 2 conditions.

Condition Fio8 m,. does not
terminates terminate
Max loop partial return > 0 | greedy Qr, | greedy A;
Max loop partial return < 0 | greedy A greedy Qr
20 e - MDP in which 77
| terminates
Lf | MDP in which 7
i does not terminate
O OCEEEENGD : 1000 @ (- ©E-DOSNII ISP PO (© 00 © o °
1t .
_2 L Ih-.m-uwl ° X . 1
0 20 40 60 80

Maximum loop return



Reward is also highly shaped with
approximation error

1.0 e o o rwm

S 05 For 100 MDPs,
° each A* learned
= — Qlearning with m with 100K
é) 0.0t N noiselessly
—— Q learning with r,, - greedy A: generated
—— Q learning with rz - w;‘ﬁ from value iteration preferences

0 200 400 600 800 1000 1200 1400 1600
Episodes



Is using ;E'i as reward advised?

No!

But it's not as bad as we would have expected (if a pitfall is addressed).



A bhetter framing of
fine-tuning LLMs
with RLHE




Step1

Collect demonstration data,
and train a supervised policy.

A promptis

Sampled from our Explain the moon
prompt dataset.

\J
A labeler
demonstrates the @
desired output 7
behavior. Some pet;ple went
to the moon...
Y
This data is used SET
to fine-tune GPT-3 258,

o n ./)?S\.\.
with supervised Y
learning. 2

E2EE

Ouyang et al.,, 2022

landing to a 6 year old

Fine-tuning InstructGPT

Step 2

Collect comparison data,
and train a reward model.

A prompt and

several model i
Explain the moon
outputs are landing to a 6 year old

sampled.
0o (&

Explain gravity. Explain war..

Moon is natural People went to
satellite of... the moon...

A labeler ranks

the outputs from @
best to worst.

This data is used RM

to train our 2R
reward model.

0-0-0-0

(and ChatGPT

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

- ™

is sampled from o

the dataset. about frogs
Y

The policy e

enerates 99

g ./)?OSQ.

an output. \.\sa{/
\/

The reward model RVM
— O
g
the output.
y
The reward is
used to update rk

the policy
using PPO.




Fine-tuning InstructGPT (and ChatGPT)

Step 2

Collect comparison data, ) ) )
and train a reward model. Mapping this to the previous content

e Their "reward model" is our 7.
e They assume the partial return preference model.

A prompt and ! i
several model e Segmentlengthis 1.
Explain the moon
outputs are landing to a 6 year old
sampled.
o o0
(] o

loon is natural People went to
satellite of... the mq

A labeler ranks

the outputs from @

EERMIEWENSG 0-6.0-0 The same approach is used for DeepMind's Sparrow (Glaese et al.,
2022), Llama 2 (Touvron, 2023), and other influential work (Ziegler et

\ al., 2019 and Bai et al.; 2022).

This data is used RM
to train our 2R
reward model. %7

0-0-0-0

Ouyang et al.,, 2022



The multi-turn language problem

human's LM's human's LM's human's LM's
LM framing: prompt response prompt response prompt response

I i
RL framing: observation action observation action observation action
R(s,a): r, r, r,

— 2 — —
return =r,+yr +yr,+... return=r +yr,+ ... return =r,+ ...
LM agent
observation | action
(prompt) (response)

human

(environment)




Arbitrary and counterintuitive discounting of
reward

human's LM's human's LM's human's LM's
LM framing: prompt response prompt response prompt response
I i
RL framing: observation action observation action observation action
R(s,a): r r, r,
— 2 — —
return =r,+yr +yr,+... return=r +yr,+ ... return =r,+ ...

When fine-tuning LLMs with RLHF, reward is used in a "bandit environment".
But the multi-turn problem not a bandit problem!

Treating this sequential problem as a bandit problem is equivalent to setting y=0.

This bandit usage of a reward function is counterintuitive, is unexplained, and confuses
many people.



Arbitrary and counterintuitive discounting of

human's LM's human's LM's human's LM's
LM framing: prompt response prompt response prompt response
I i
RL framing: observation action observation action observation action
R(s,a): r r, r,
— 2 — —
return =r,+yr +yr,+... return=r +yr,+ ... return =r,+ ...

Setting y=0 isn't necessarily wrong because the choice of y is arbitrary when
assuming the partial return model. But it's counterintuitive, is unexplained, and
confuses many people.



Does RLHFE fine-tuning for multi-turn language
tasks unknowingly assume a regret preference
model?

P01 = 92) = logistic( f(o1) = f(03))

. f(o) = discounted sum of g(s,a) for each (s,a) in o

N

Partial return Regret
g=r g=A



Does RLHE fine-tuning for multi-turn language

tasks unknowingly assume a regret preference
model?

Partial return Regret
Assume learned g approximates r. Assume learned g approximates A*.
Assume y=0. No y hyperparameter.
7 (s) = argmax, Qr(s,a) 7. (s) = argmax, A, (s,a)
= argmazy(r(s,a) + yE«[V.X(s")]) = argmaz, g(s,a)
= argmaz, r(s,a)
= argmaz, §(s,a)

The current assumption of the partial return preference model and the arbitrary

assumption of y=0 together give the same result as simply assuming our regret
preference model!



Does RLHF fine-tuning for multi-turn language tasks
unknowingly assume a regret preference model?

Partial return Regret
Assume learned g approximates r. Assume learned g approximates A*.
Assume y=0. No y hyperparameter.
7 (s) = argmazx, QF(s,a) 7. (s) = argmazx, A (s,a)
= argmazy(r(s,a) + yE«[V.X(s")]) = argmaz, 9(s,a)
= argmaz, r(s,a)
= argmaz, §(s,a)

The current assumption of the partial return preference model and the arbitrary
assumption of y=0 together give the same result as simply assuming our regret
preference model.



What is learned during RLHFE for LLMs is
better thought of as an approximation of A",
not of r.

Benefits of assuming that learning from preferences produces an A"
® uses the more supported regret preference model
e explains the previously hard to justify treatment of a sequential task as a bandit

problem
o  because that's how to force r to act like A* (or Q*)

removes underspecification regarding y
if you want a reward function that will be added over multiple turns of
interaction, suggests a different algorithm



Summary

Using A* as a reward function is
less harmful than expected.

It's still not advised.

A new framing of RLHF for LLMs:
optimizing to an approximation of
A",




P(oy > 02) = logistz’c(f(al) — f(ag))
Partial return: f(o) = sum of reward in o

Regret. f(0) = sum of A*(s,a) for each (s,a) in o

Papers

Regret preference Mistaking A*
model for reward






O(

A key part of the current model for what
drives human preferences in sequential
tasks is unstudied and unvalidated.

The sum of reward in each trajectory
segment does not explain well how
humans give preferences.

You wouldn't want them to, based on
theoretical properties.

Regret is an improved model that
measures a segment's deviation from
optimality.

The model of human preference is a
critical piece for alignment.




Future work

e Efficient estimation of regret for complex tasks

e Understand the partial return preference model's past success, despite it being a
poor model of humans

e Nudging humans towards preference models






A multi-turn Greedy action

language problem selection as an RL agent
(from policy
problem gradient)
i b & agent (LM) P observation -
: (prompt +
agent ‘ | tokens so far) (next token)
(LM) T v '
\ J \_ [_ ] 4 environment
i \ (token
appender)
observation action
(prompt) (response) : A §
. Reward
environment G(response, history) for the final token

(human) 0 for earlier tokens




Aligned reward

2001: A Space Odyssey Blues Brothers

Knox et al., Reward (Mis)design for Autonomous Driving
AlJ 2023



BACKGROUND ON REWARD

RL oversimplified: a set of problems and corresponding algorithmic
solutions, in which experience in a task is used to improve an agent’s
behavior such that it gets more reward.

More specifically, most RL problems focus on increasing the expectation of
G(1), the utility of a trajectory:

( ) Zl(tT b R(Staatast—l—l)

(Assumes undiscounted/episodic setting and an unstated distribution over
starting states)



Benefits of the regret preference model
(over the partial return model)

1.  Considers consider state value and decision quality, which humans intuitively
appear to consider.

2. Always prefers optimal segments over suboptimal segments, making it
reward identifiable.

3. Better describes our human preferences dataset.

4. More sample efficient
- when learning from its own preferences.
- when learning from human preferences.



Reward identifiability

With partial el ol S
return, reward is

not generally

identifiable A)
without preference
noise that reveals

rewards' relative
proportions.




Reward identifiability

100%, O S 100%, O S
safe
S S
0 0
S
lose
S .
win
If rwin = 11, arisk is optimal. If ryin =9, Gsare is optimal.

Yet both create the same (noiseless) preferences!!



Reward identifiability

100%, 0 100%, 0 S

\)
. %V > Vsafe . 4 > Zsafe

\) Therefore, reward is not generally

identifiable with noiseless preferences from |§

partial return.

o717 W Yy . o9~ 9§ |
WINn WIin

If rwin = 11, 0,5k is optimal. If rywin =9, Gsase is optimal.

Yet both create the same (noiseless) preferences!!



Reward identifiability

Similarly, reward is not generally identifiable for inverse
reinforcement learning from (noiseless) demonstrations
of optimal behavior.



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret
f(o) = —regret(o)

lo| -1

regretq(o|F) = Z regretq(o¢|7) = Vi (so,0) = (BeT+VE (So,(0))
t=0

when all
transitions are
deterministic




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret
f(o) = —regret(o)

|o|—1
regretq(o|F) = Z regretq(o|t) =V (se,0) —

(Eaf
t=0 /

Partial return

when all
transitions are
deterministic

‘I_VF*(SU,IUI))




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret
f(o) = —regret(o)

lo|—1
regreta(olf)2 3" regreta(oulF) = V7 (s0,0) —~ (So+V7 (50.10])

-]

Best possible expected return from Partial return Best possible expected return
the start state (i.e., by optimal policy) from the end state (i.e., by
optimal policy)

when all
transitions are
deterministic

N—"




The missing piece: the model of preference

when all
transitions are
deterministic

P01 = 92) = logistic( f(o1) = f(03))

Proposed preference model: Regret

f(o) = —regret(o)

lo| -1

regreta(olf) 2 Y regreta(o|)=V7

t=0

Best possible expected return from
the start state given the segment o

A

\

(55,0)

— (X7

VF*(SG,IUI)

)

/

Best possible expected return from
the start state (i.e., by optimal policy)

g

Partial return

|

optimal po

Best possible expected return
from the end state (i.e., by

licy)



What if transitions can be stochastic?

|o|—1
when all - ~ o~
varstons e regreta(o|F) £ ) regreta(o:|7) =V (50,0)— (SoT+VE (50,10))
t=0
o 100%, 0
The lottery: VS safe
)
lose
S




What if transitions can be stochastic?

o] -1
when all - o~ ~
t;ae:sei:risir:]sis?irce ’]”eg’)"etd (O'|'r') é E 'r'eg’l“etd (O't |’r) :%) o (Edr_l_va/,ldl ))
t=0

Best decision

100%, 0 S
o safe

The lottery:

Best outcome




The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))




Deterministic MDPs with different n* but the same
preferences by partial return (for segment size 1)




Deterministic MDPs with different n* but the same
preferences by partial return (for segment size 2)

0<L0—Sa<$o—sb

S
2 term




An algorithm for
reward learning
with estimated
regret




Learning a reward function from preferences

Given a preference model P(o1 = o2|f),

optimize r to maximize the likelihood of the preferences dataset.



The missing piece: the model of preference

P01 = 92) = logistic( f(o1) = f(03))

Partial return: f(o) = sum of reward in o

Which shows better behavior?

end state
end state (safe)

(crash imminent) 1
------- Bl
0sumof | "mmmmmmmmm of reward
. for bumping
Partial return prefers the reward the wall

| start state start state
I eft se g ment! (safe) (crash likely)

01 02



Efficiently estimating value functions
P(o1 = 02) = lOQiStiC(f(Ul) - f(02))

Regret preference model

f(o) = —regret(o)
= sum of A*(s,a) for each (s,a) in o

|lo]—1 lo]—1 lo|—1

regret(o|r)= Z regret(o|F) = Z [V},-* (S6,t) —QF(S0,t,00,t ] Z —A%(S0.t500,t)

lo| -1

regretq(o|F) Z regretq(o:|7) =Vi (80,0) — (B T+VE (80,0]))
t=0

We assume linear reward functions and use successor features
to quickly estimate Q* and V* for new reward parameters.





http://www.youtube.com/watch?v=V3hAqlE0qXg&t=293

Human preferences visualized

|o|-1
Recall regrety(o|F) = Z regretq(o:|7) =|V7 (8,0)— (o7 iHVF (80,01))

- e /

Best possible expected return from the start Partial Best possible expected return from
state (i.e., by optimal policy) return the end state (i.e., by optimal policy)

Proportion
that prefer G,
@ 100%

® 33%
® 66%
® 50%
® 33%
® 16%
® %




The delivery domain
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When each model is perfect, because it
creates its own preference dataset

Ratio of MDPs for which

performance is near optimal

(regret / partial return)

l.67

1.5t

1.47

1.37

1.2

1.1}

1.0

3 10 30 100 300 1000 3000

Preferences per training set

— Noiseless
--- Stochastic



When each model is perfect, because it
creates its own preference dataset

S % g
=8 5 — Regret
= 2 "8 (noiseless)
S .= 5
0 & — Partial return
g 2 > (noiseless)
% g = -- Regret
e 6 gg (stochastic)
G .
\2 5 5 40% -- Partial return
ot & (stochastic)

3 10 30 100 300 1000 3000
Preferences per training set



Preference Model rwin=1 i =107 Twin =100 Twin =100
Irlose:_50 "f'lose:_50 rlose:_l Tlose:_103
Noiseless Pregret 100% 100% 100% 100%
Stochastic Pregret 100% 100% 100% 100%
Noiseless Ps,. 100% 0% 100% 0%
Stochastic Ps,. 100% 0% 100% 100%




Problems with the partial return preference

model
P(oy = 03) = logiStiC(f(Ul) - f(02)>

Partial return: f(o)=sum of reward in o

1. Does not always prefer optimal segments over suboptimal segments

2. Humans intuitively appear to consider state value, whereas the partial return preference model
does not.

3. Indifferent to a constant shift in the output of the reward function.

4. When |ol =1, the discount factor is not considered, yet the discount factor and the reward function
interact to determine the set of optimal policies.

5. Lacks identifiability with noiseless preferences

6. Less sample efficient than the regret model when learning from its own preferences.



Problems with the partial return preference

model
P(o1 = 03) = logistic(f(o1) - f(0))

Partial return: f(o) =sum of reward in o

Which shows better behavior?

1. Does not always prefer optimal segments over suboptimal segments
or A—>
2. Humans intuitively appear to consider state value, whereas the partial 4_? L
return preference model does not. o1 o

3. Indifferent to a constant shift in the output of the reward function.



Problems with the partial return preference

model
P(oy = 02) = logistic(f(ol) — f(ag))

Partial return: f(o) =sum of reward in o

1. Does not always prefer optimal segments over suboptimal segments

2. Humans intuitively appear to consider state value, whereas the partial
return preference model does not.

3. Indifferent to a constant shift in the output of the reward function.

4. When |ol =1, the discount factor is not considered, yet the discount
factor and the reward function interact to determine the set of

optimal policies.



Problems with the partial return preference

model
P(oy = 03) = logiStiC(f(Ul) - f(02)>

Partial return: f(o)=sum of reward in o

1. Does not always prefer optimal segments over suboptimal segments

2. Humans intuitively appear to consider state value, whereas the partial return preference model
does not.

3. Indifferent to a constant shift in the output of the reward function.

4. When |ol =1, the discount factor is not considered, yet the discount factor and the reward function
interact to determine the set of optimal policies.

5. Lacks identifiability in multiple contexts



The delivery task
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Preference elicitation

WHICH SHOWS
BETTER
BEHAVIOR?

2/48




Performance with random partitions of
human preferences dataset

[S—

S

S

o~
T

]

S

o~
T

S sou

Al
2 — Regret
S 60% .
> — Partial
g 40% return
=
=
=

% of partitions in which
performance is better than

19 36 Ol 182 363 906 1812

(100) (50) (200 (10) (5) (2 (D)

Preferences per training set
(partitions)



Limitations and future work

e Efficient estimation of regret for complex tasks (including deep learning settings).
e Further test the regret preference model.

e Understand the partial return preference model's past success, despite it being a
poor model of humans.

e Develop prescriptive methods to nudge humans to conform more to normatively
appealing preference models.



Summary

e A new preference model with regret(c) as the segment statistic

o Normative and descriptive comparisons to previous partial return
model

e We show that the choice of preference model impacts the performance of
learned reward functions.
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100 randomly generated MDPs
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