
Robot Air Hockey: A Manipulation Testbed for
Robot Learning with Reinforcement Learning

Caleb Chuck1,∗, Carl Qi1,∗, Michael J. Munje1,∗, Shuozhe Li1,∗, Max Rudolph1,∗,
Chang Shi1,∗, Siddhant Agarwal1,∗, Harshit Sikchi1,∗, Abhinav Peri1, Sarthak Dayal1,

Evan Kuo1, Kavan Mehta1, Anthony Wang1, Peter Stone1,3, Amy Zhang1, Scott Niekum2

1 The University of Texas at Austin
2 University of Massachusetts Amherst

3 Sony AI

Abstract—Reinforcement Learning is a promising tool for
learning complex policies even in fast-moving and object-
interactive domains where human teleoperation or hard-coded
policies might fail. To effectively reflect this challenging category
of tasks, we introduce a dynamic, interactive RL testbed based
on robot air hockey. By augmenting air hockey with a large
family of tasks ranging from easy to challenging, goal-conditioned
or multiobject, our testbed allows a varied assessment of RL
capabilities. The robot air hockey testbed also supports sim-to-
real transfer with three domains: two simulators of increasing
fidelity and a real robot system. Using a dataset of demonstration
data gathered through two teleoperation systems: a virtualized
control environment, and human shadowing, we assess the testbed
with behavior cloning, offline RL, and RL from scratch.

Index Terms—Reinforcement Learning, Dynamic robotic ma-
nipulation, Skill learning.

I. INTRODUCTION

Reinforcement Learning (RL) offers a promising direction
for real-world robotics by allowing robotics to accomplish
complex tasks using only a reward description. Although
high-performance demonstrations can sometimes be collected
through tools like teleoperation, it is not always feasible (and
often not possible) to collect large quantities of such “expert”
data. Recent developments in RL [1]–[3] offer ever-increasing
generalization capabilities, and improved learning algorithms
through goal-conditioned RL [4]–[6] or unsupervised skill
learning [7]–[11], as well as utilization of human information
such as preferences and offline demonstrations [12]–[16].
Suitable testbeds for assessing RL in the real world will help
scale RL to real-world robotics.

Real-world environments are challenging because they are
often both dynamic and interactive. For example, objects can
roll about the table when cooking or might fall when cleaning.
The world is full of dynamic elements—state features that are
constantly moving. By contrast, quasistatic elements remain
predominantly stationary and only move when being operated
on by the robot. Furthermore, real-world tasks often require the
agent to interact with its environment, i.e. making contact with
and even manipulating, elements such as objects and other

* denotes equal contribution, corresponding author
calebc@cs.utexas.edu

agents. In tasks that are both dynamic and interactive, RL
offers a promising direction since human demonstrators can
often struggle with precise, high-speed robot teleoperation,
and hard-coded policies can be brittle when taken out of a
controlled context.

We introduce a novel dynamic, interactive RL testbed that
modifies air hockey, a popular game, with a collection of
objects, Figure 1 illustrates some of the potential of this
domain. By focusing on puck-hitting, the domain is inher-
ently interactive and dynamic. This platform offers several
advantages that facilitate RL training. The puck’s constrained
movement allows for efficient environment resets, while a
strictly controlled agent workspace ensures safe autonomous
operations when exploring. By incorporating multiple objects,
both virtual and real, we can describe a wide array of tasks,
illustrated in Figure 3. To evaluate RL without the physical
setup we provide two simulators, illustrated in Figure 1, of
increasing fidelity to the real world and tunable parameters
so that sim-to-real transfer algorithms can be assessed even
without the physical system. Finally, we introduce a real-world
human-teleoperated dataset using two teleoperation systems
for the agent, allowing the assessment of learning from demon-
stration and offline RL algorithms (see Figure 2).

This work not only describes the domain and associated
tasks but also assesses several baseline algorithms and eluci-
dates the key design decisions motivating the algorithm. We
also assess behavior cloning, vanilla RL, and offline RL on
several tasks in simulation and the real world. We demonstrate
empirically that the set of tasks developed has a smooth
variation from easy to difficult for all of these algorithms,
both in simulation and the real world.

Researchers can use a wide range of tasks in a curriculum
to test the capability of their algorithms, with simpler tasks
in the 2D simulator to complex ones in Robosuite. This
testbed offers an assessment of dynamic components and
sparse interactions, properties that might not be assessed in
other RL benchmarks. Furthermore, the testbed offers a tool
for assessing a wide range of RL settings such as goal-
conditioning, model learning, task transfer, skill learning, of-
fline, and inverse reinforcement learning—to name just a few.



Reinforcement Learning Skill TransferLearning from Demonstrations …

Simulation Real World
Top-down camera

Learned policy

RTDE Controller

Teleop control

Mimic camera
60Hz 640x480

Action (task space)

Puck state
Puck Detect

Proprioception

Action (Joint force)

Fig. 1: (a) Robot Air Hockey is a testbed that contains dynamic, interactive Air Hockey tasks from multiple domains ranging from simulation
to the real world. It is suitable for evaluating a variety of frameworks such as RL, learning from demonstrations, and skill transfer. (b) Overview
of our control pipeline. We use an RTDE controller to transform the task actions into joint forces for the robot.

Finally, we intend to offer a real-world air hockey platform to
assess high-performing algorithms in the real world, perform
user studies, and even remote data collection.

II. DOMAIN DESCRIPTION

A. Components

The common components across environments consist of
the table, the paddle, the pucks, moveable objects such as
blocks, and immovable obstacles. A robot arm is used in the
Robosuite and real-world environments to control the paddle.
In the 2D simulator the paddle is manipulated directly. In all
domains, the table workspace is 66 in ×24 in, the paddle
is 3.75in in diameter and the puck is 2.5 in. We maintain
consistency between the domains for transfer learning.

B. Teleoperation

The mouse teleoperation setup streams a live video feed of
the robot as seen by the overhead camera after performing an
orthographic tomography to transform the camera coordinate
system into the robot coordinate system in 2D. The mouse
x, y position in the image is mapped to a desired robot x, y
pose, using force control to maintain contact with the table.

Similarly, the shadowing setup tracks paddle movement and
maps it to desired robot x, y positions. Instead of the mouse,
the human manipulates a red paddle, and color segmentation
is to track the paddle movement on this surface and transform
these movements. This approach allows the user to play more
naturally, as it is in direct control of a paddle, while bounded
by the capabilities of the robot.

C. Environments

A common high-level reward interface and action space are
used for all environments sim and real.

1) 2D: Our 2D simulation environment uses the Python
implementation of Box2D [17] as a physics simulation back-
end. While we are not able to deploy robot arm models in
this environment, we use hand-tuned reward shaping so that

sequences of actions are empirically more realistic for a robot
arm. This environment has many changeable world parameters
such as paddle mass, puck mass, dampening, friction, gravity,
starting puck velocities, and many more parameters.

2) 3D: Our 3D simulation environment is a custom Robo-
suite [18] setting which builds on top of a MuJoCo [24] as a
simulation backend and allows us to simulate the robot arm in
addition to the other components such as the table, a paddle,
and a puck. For control, the operational space controller [25]
is available in Robosuite, which we modify to maintain stable
contact with the table.

3) Real World: Our real-world setup consists of a Wind
Chill air hockey table tilted 5.5 degrees and a UR5e robot
arm. The vision system uses a Sony Playstation Eye, a high
framerate camera, which gathers 640×480 frames at 60 FPS,
mounted to the ceiling to have a full view of the table. The
robot control operates at 20 FPS, which is dictated by the cost
of vision processing and computing the desired action from
the model while maintaining a stable control loop. We use
hue-saturation-value (HSV) segmentation and a homography
transformation using OpenCV [26] to estimate puck location
and velocity. We visualize puck detection in Figure 10. We
use force and operation space control on the robot to maintain
the contact between the paddle and the table. A picture of our
workspace and tasks is described in Fig 3. The control flow
is illustrated in Figure 1b.

D. Tasks

We provide a collection of eleven total tasks with tuned re-
wards which vary in difficulty from those that can be achieved
through behavior cloning (reaching) to those where even
humans can struggle in the real world (juggling). Each task
includes a designed reward function, and some can include
additional objects beyond the puck and the end effector, such
as target regions or other objects to be manipulated through the
puck. We have five tasks on the real robot, six in Robosuite,
and eleven in Box2D. The wide variety of tasks allows us



Environment Method Robot Air Hockey Tasks

Reach Reach V. Touch Strike Strike Crowd Juggle Puck V. Block Hit Goal Hit Goal V.

Box2D [17]

BC 0.9 0.8 1.0 0.7 0.3 0.3 0.7 0.0 0.1 0.0
IQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.4 0.0
RL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.9 0.0

Robosuite [18]

BC 0.9 0.8 0.8 - - 0.6 0.6 - 0.1 -
IQL 0.9 0.9 0.8 - - 0.7 0.8 - 0.1 -
RL 1.0 1.0 1.0 - - 0.9 0.9 - 0.2 -

Real World

BC 0.9 0.1 0.3 - - - 0.1 - - -
IQL 1.0 0.0 0.6 - - - 0.3 - - -

Human 1.0 0.0 1.0 - - 0.3 1.0 - - -

TABLE I: Success rates for the Box2D, robosuite and real robot environment. A dash (-) indicates that this combination of environment, method and task
was not evaluated. For Box2D, a combination of SAC/HER [19], [20] is used to train the goal-conditioned RL policies, while PPO [21] is used to train RL
policies for the remaining tasks. For Robosuite, we use PPO for Vanilla RL, following the implementation of CleanRL library [22]. In simulation, BC and
IQL [23] are used to learn policies offline using the ”expert” data collected with trained PPO policies. On the real robot, we instead use a teleoperated dataset
collected by 8 human players of varying skill of 400 trajectories for BC and IQL.

not only to assess varying difficulty but also leaves room for
potential skill learning and transfer learning. The description
of the tasks and their rewards are in Appendix V-B.

E. Offline Data

On the real robot, we provide a dataset of human gameplay
using both teleoperation methods (350 mouse-teleop trajec-
tories and 50 shadow-teleop trajectories) gathered from 8
participants of varying skill. We visualize some of the human-
gathered demonstrations in Figure 5 and Figure 10. In these,
it is clear that the human demonstrators, while able to hit the
puck at least once, can struggle to achieve multiple hits. In
Table I, we assess successful juggling as hitting the puck at
least four times in a trajectory, and we can see that humans
only achieve moderate success. We discuss real-world data
collection and visualize human-gathered policies in Figure 5
and Appendix V-J.

III. LEARNING METHODS

In our experiments, we evaluate three representative meth-
ods: Behavior cloning (mean squared error loss), Vanilla Rein-
forcement Learning (soft actor-critic and proximal policy algo-
rithms), and Offline Reinforcement Learning (IQL). Behavior
cloning learns a policy to take desired actions, Reinforcement
learning maximizes discounted reward, and offline RL assumes
environment interactions are not available to the agent. An
extended discussion can be found in Appendix V-C.

IV. EXPERIMENTAL RESULTS

In this section, we briefly describe the qualitative results of
running various learning algorithms in the three domains. For
all experiments, our policies are represented with multi-layer
perceptions with a hidden layer of 256. We include several
figures illustrating the robot behavior in Box2D (Figure 4),
Robosuite (Figure 6) and the real world (Figure 5). We also
discuss training curves in Appendix V-I.

A. Vanilla Reinforcement Learning

We assess Vanilla RL in simulation providing sufficient
reward shaping to ensure that the agents can perform well, and
find good performance in both simulators, as seen in Table I.
In this table, we also describe the specific RL algorithms

we employ. This provides evidence to validate the hypothesis
that RL is an ideal choice in dynamic, interactive tasks
where behavior cloning might struggle to utilize the nuanced
distinctions in capabilities. In the real world, however, the
random exploration necessary for RL from scratch prevents
the robot from gathering enough meaningful feedback without
wearing down the robot.

B. Behavior Cloning

In the real world, using the dataset of approximately
128,000 frames of human-generated striking behavior gathered
through two teleoperation systems, we train a network that
maps puck and proprioceptive state information to actions.
Because humans can struggle to hit using teleoperation, the
learned models likewise struggle, while also being hampered
by distribution mismatch. In the real world, we also experi-
mented with an image-based policy using a ResNet-18. In the
simulated domains, we behavior clone using 1M time steps
from high-performing policies.

C. Offline RL

Offline RL offers a mechanism for utilizing data collected
offline from the agent, such as our teleoperation dataset,
to learn a policy. For offline RL, we use IQL [23]. Be-
cause Offline RL does not generate its own environment
interactions, though, it can struggle more with distribution
mismatch. Nonetheless, Offline RL generally outperforms Be-
havior Cloning in the real world.

V. CONCLUSION

We introduce an air-hockey-based evaluation domain for
RL to evaluate RL in dynamic interactive environments. We
provide the initial set of evaluations that support the hypothesis
that in these kinds of domains, RL can outperform imitation
learning in a real-world robotics setting. Most importantly, we
intend for researchers to use the suite of tasks, simulators,
and collected human data for assessing a wide variety of
RL settings from goal-conditioned RL to unsupervised skill
learning to sim-to-real transfer, which we explore more in Ap-
pendix V-H. Videos describing the project, of learned policies
and human data can be found at RLAirHockey.github.io.

http://RLAirHockey.github.io


APPENDIX

A. Task Figures

Shadow-Teleop
Human

Mouse-Teleop

Fig. 2: Robot Air Hockey supports two types of teleoperations.
Mouse-Teleop (top): The user moves the mouse to control the robot.
Shadow-Teleop (bottom): the user moves a paddle to control the
robot.

Puck

Paddle

Robot

Fig. 3: Robot Air Hockey real-world setup. We use a top-down
camera to provide observation and a UR5e robot to actuate the paddle.
Our real-world setup can facilitate many air hockey tasks, including
but not limited to reaching, touching, and hitting.

B. Task Descriptions

Below we describe the ten tasks we assessed in this work.
In addition to the reward specified by the task itself, we also
provided regularization to ensure that undesirable behaviors
such as jittering and twisting motion, which can cause the
robot to emergency-stop, were prevented.

Below we describe the eleven tasks we assessed in this
work. In addition to the reward specified by the task itself,
we also provided regularization to ensure that undesirable
behaviors such as jittering and twisting motion, which can
cause the robot to emergency stop (a safety measure on the
UR5 that prevents it from damaging itself or the human), were
prevented.

1) Reaching: The paddle reaches a random location. When
the paddle is within ϵ of the goal, the agent receives a
positive reward and the episode is reset.

2) Reaching with Velocity: The paddle reaches a random
location and velocity pair. When the paddle is within
ϵposition, ϵvelocity of the goal (both position and velocity)
a reward is given, and the episode is reset.

3) Touching: The paddle touches the puck. Upon detection
of contact, a reward is given. The agent is continually
rewarded each time it touches the puck.

4) Striking a stationary puck: The paddle hits a stationary
puck and moves it a minimum distance. If a sufficient
velocity is achieved, a reward is given and the episode
ends.

5) Striking a stationary puck into a crowd: The paddle
hits a stationary puck which causes it to collide with
blocks, similar to the game of pool. The reward is
dependent on the amount of spread from the blocks from
the crowd.

6) Juggling: The paddle hits a puck a minimum distance
above the paddle at the time of hitting.

7) Puck Velocity: The paddle hits a puck and causes it to
move at a minimum upward velocity.

8) Moving a block: The paddles hits a puck into a block,
causing it to move a minimum distance from the block’s
initial position.

9) Hitting into a goal region: The paddle hits a puck into
a goal circle region with a constant radius.

10) Hitting into a goal region with desired velocity: The
paddle hits a puck into a goal circle region with a
constant radius with a specified velocity. It is rewarded
based on distance to the goal region’s center, cosine
similarity between the puck’s vector when entering the
goal region, and difference in the puck’s magnitude from
the desired velocity’s magnitude.

While not a task we trained models for in this work, our
Box2D simulation environment also supports both collabora-
tive play and adversarial play, extending these environments as
a potential testbed for multi-agent RL. Furthermore, additional
tasks with increasing complexity can be easily constructed.

C. Learning Methods

In our experiments, we evaluate three representative meth-
ods: Behavior cloning (mean squared error loss), Vanilla Rein-
forcement Learning (soft actor-critic and proximal policy algo-
rithms), and Offline Reinforcement Learning (IQL). Behavior
cloning learns a policy to take desired actions, Reinforcement
learning maximizes discounted reward, and offline RL assumes
environment interactions are not available to the agent.

D. Preliminaries

A Markov decision process is defined by the tuple M :=
(S,A, p, R), where S is the state space, A is the action space
and s ∈ S, a ∈ A are states and actions respectively. p(s′|s, a)
is the transition function that gives the probability of the next
state s′ given the current state and action (s, a). The reward



function R(s, a) maps state and action to a scalar reward. A
policy π(a|s) is the probability of an action given the current
state.

E. Behavior Cloning

Behavior cloning [27] is an offline imitation learning ap-
proach that learns a policy using supervised learning. We use
the common MSE loss to learn π:

Lbc = E(a,s)∼D[∥π(s)− a∥22].

Although the performance of behavior cloning is limited
by the quality of the dataset and is plagued by compounding
error problems in the limited data regime, it presents a simple
and scalable alternative [12], [28] to the more complicated yet
unstable imitation learning methods [14], [29], [30].

F. Reinforcement Learning

The goal of Reinforcement Learning is to learn a policy
maximizing returns obtained on any user-specified reward
function. Formally, RL aims to learn a policy π that maximizes
the cumulative return J(π) = Eπ[

∑∞
t=0 γtr(st, at))]. RL

reduces the effort of designing hand-tuned controllers by
proposing general approaches that learn any behaviors.

Online RL: In our work, we rely on Proximal Policy
Optimization (PPO) [21] as our baseline algorithm. PPO has
been extensively used in robotics for its stability and guarantee
of near-monotonic improvement.

Offline RL: Offline RL deals with a specific setting where
environment interactions are not available to the agent, but
rather the agent is provided with data of offline transitions of
the form {s,a,r,s’} from the environment. This setting reduces
the burden of exploration considerably and provides a safe way
to learn from previously collected datasets. Offline deep RL
algorithms suffer optimization difficulties due to problems like
overestimation [31], and feature-coadaptation [32] leading to
popular regularizers like pessimism [15], [33], [34]. We use a
representative and performant algorithm for offline RL in this
work - IQL [23].

IQL is a modification on the standard actor-critic learning
procedure to replace the maximization of the state-action value
function with a maximization that only chooses values for
actions seen in the dataset.

G. Related Works

The field of agile robotics has seen growing interest in
the past several years. Air hockey-playing robots have been
studied in several settings [35]–[45]. Notably, a recent work-
shop [46] highlighted robot air hockey as a competitive robot
learning task with several reports on model-based and deep
learning methods [47]–[49]. Specifically, [35] used Bayesian
optimization and a slew of other well-tuned solvers to plan
trajectories for striking the puck. This work is distinct from
these systems in the focus on a variety of tasks rather than
highlighting competitive air hockey, as well as the incorpo-
ration of human teleoperation modes to assess demonstration

and offline methods. The many works on robotic air hockey
cover a wide range of topics and are summarized here:

1) [38] uses a hierarchical switching controller to play with
different behaviors according to the robot’s opponent.

2) [39] aims to generate motion plans that take advantage
of weak spots in a human’s vision when switching gaze.

3) [40] is an older study demonstrating the difficulty of
building a vision-based autonomous air-hockey system.

4) [41] presents a state-model-based method to create
air hockey-playing agents against which humans can
compete.

5) [42] introduces a method to estimate the parameters
of air hockey tables (e.g. coefficient of friction, etc.)
automatically so that a robot may adapt its behavior
accordingly.

6) [43] demonstrates a fast-hitting, air hockey-playing
robot using analytical controllers that were developed
by modeling the air hockey environment.

7) [44] design a high-speed wrist mechanism as an add-on
to a manipulator so that a robot can easily compete with
the speed of a human air hockey player.

8) [45] introduces a method to align simulators with real-
world observations using causal relationships

Further, robotic table tennis [50], [51] has shown promise
as a challenging domain for using RL to learn agile robot
policies. The authors in [50] demonstrate that a combination
of learning techniques, including evolutionary strategies, is
important to learn high-performing table tennis policies. While
our testbed is similar to that in [50] in terms of necessary
agility, our air hockey is distinguished by the tilted table which
induces a constant motion of the puck, regardless of the robot’s
intervention. This facilitates a wide range of tasks and allows
automatic resets when learning since the puck continually
returns to the reachable workspace of the robot.

H. Future Work And Relation with Manipulation Skills

In this section, we discuss the wide range of possible RL
settings where the testbed can be used. Before jumping into
these settings, we discuss the way in which a researcher might
use this testbed. By providing tasks in the 2D simulator that
can be run quickly and should be easy to solve, such as
reaching or reaching with velocity, a researcher can sanity
check their implementation. Then, based on the particular
characteristics of their algorithm, such as goal-conditioning,
object generalization, or transfer properties etc., they can take
a collection of the tasks in the 2D domain and use them to
assess their algorithm in a simplified environment that assesses
the characteristic behaviors of the method. To illustrate scaling,
they can then take those algorithms and apply them to the 3D
simulator. Since the simulator shares the same state and action
space as the real robot, if their method is offline then it can
be trained with the offline real robot data, and possibly tested
on the physical system.

Perhaps the most obvious setting for RL in air hockey is
goal-conditioned RL. The inverted table is inherently goal-
conditioned in the sense of striking the puck to a desired



position, and one of the most challenging of our existing tasks
is striking the puck to a desired position with a desired velocity.
However, many more goal-conditioned settings exist, including
using the puck to hit an object to a location, achieving a
sequence of goals for the end effector, or getting the puck
into a desired goal state relative to other objects.

Another clear setting for future RL assessment of the
robot air hockey testbed, considering the multiple simulation
environments of increasing fidelity, is to utilize offline data
generated by a higher fidelity simulator to train policies using
another simulator [52]. Sim-to-real transfer can be iterated
on quickly through 2D-to-3D sim-to-sim transfer and then
tested on 3D-to-real transfer. Similarly, model-based RL can
utilize the simpler simulated environment models and transfer
to model more complex real-world dynamics, especially using
the offline data.

Another consequence of the paired simulators is to provide
a natural curriculum for curriculum learning. Within single
tasks, depending on the initialization of target objects tasks can
range from easy to hard, as well as between simulators. Also,
because many of the tasks are derivative of each other, this
leaves the room open for transfer learning or meta-learning,
where learning on some tasks will benefit downstream learn-
ing. As an extension, unsupervised learning or skill learning
make a lot of sense in many of the environments since certain
strikes and hits will be useful across multiple tasks. While
hard-coding these behaviors would be challenging, learning
them from the offline dataset or from experience could allow
agents to perform complex behaviors like hitting a target block
to a desired location.

The air hockey setting itself offers possibilities for object-
based factorization. While this work only provided a few
additional objects beyond the puck and paddle, a wider variety
of objects are actively being incorporated to investigate object-
based generalization algorithms. For example, adding in
target objects to push, obstacles for the puck, negative or
positive reward regions, or even regions of different physics are
all possible. Furthermore, by modifying real-world parameters
such as table angle or paddle shape, we can assess causal or
model-based RL. Finally, especially as more objects are added,
visual complexity opens the door for more complex object
detection than simple color segmentation.

With many manipulation tasks focusing on tasks that can
often be performed with high precision for human demonstra-
tors, such as pick-and-place, this system offers the opportunity
for superhuman performance, especially on even more chal-
lenging tasks, such as two-puck juggling. RL is an ideal tool
for this setting, as suggested by the results in this work, but
RL directly on the robot is limited.

While the existing system shows a wide range of capabil-
ities, the real-world system illuminates several insights about
running learned policies in a high-speed setting. In particular,
maintaining high latency is challenging, and we found that
even humans playing at 20Hz can struggle. We hope to
follow up with experiments investigating human capabilities in
teleoperation. Furthermore, one of the most significant hurdles

is the robot emergency-stopping, either because a learned
policy takes cyclic actions that result in damaging resonant
behavior, or because the robot jerks too quickly when changing
direction. Further investigation into action smoothing could
provide higher-quality human demonstration data and offline
policies.

As an immediate direction, the air hockey testbed offers of-
fline RL assessment in a dynamic, interactive real-world set of
tasks. The initial results suggest that RL is preferable because
of the difficulty of gathering high-quality demonstrations, and
further investigation into offline and mixed offline and online
methods can provide substantial benefits.

We are looking into multi-agent settings. Air hockey is
itself an adversarial game. Beyond this, simulators can be
modified to include collaborative settings such as rallying the
puck between multiple paddles or multiple puck juggling with
multiple paddles. Furthermore, we can extend the adversarial
setting to more than two goal regions and opposing paddles
in a free for all. On the physical robot, by incorporating an
additional UR5 at the opposite end of the table, we can realize
some of these settings. Alternatively, while humans far outstrip
the physical capabilities of the UR5, adversarial play can be
between two humans playing against each other through the
robot.

Finally, the teleoperation systems offer several means of
assessing human-robot interaction. Some possible directions
for this include simple assessments of human skill levels over
play on the robot or frustrations with robot capabilities, to
more complex assessments of humans being able to detect or
react to another human playing, or a learned policy.

In summation, we believe that the robot air hockey testbed
offers ample opportunities to assess a significant range of RL
capabilities across multiple domains. While there are certainly
limitations, a shared interface can facilitate proof of concept
work.

I. Training Curves

We illustrate the training curves as normalized reward over
the number of timesteps for Box2D (Figure 7), success rate
over 15 episodes over the number of training timesteps for
Robosuite (Figure 8), mean squared error for behavior cloning
on the real robot, and actor loss for IQL over number of
iterations of training (Figure 9). The real robot uses different
losses because we do not evaluate during training, as that
would require loading partial networks onto the real robot,
which would greatly extend training time.

J. Puck Hitting dataset

This section will describe how we extract the state of
the puck on the table from the collected videos and show
exemplary trajectories from our dataset. We collected videos
of several participants attempting to hit the puck after being
dropped from the far end of the table using the various
teleoperation modalities.

Puck state extraction. We use red or green pucks because
they are the easiest to locate on the air hockey table using HSV



color segmentation. To find the location of the puck on the
air hockey table, we first apply a homography transformation
to the image to account for the distortions introduced by the
camera. We then apply a mask to each frame that indicates
whether a pixel falls within the color bounds for the red or
green puck. Lastly, we find the median pixel location of all the
masked pixels and apply an affine transform that maps from
the pixel location in the image to the robot base’s reference
frame. Puck trajectories In Figure 10, we illustrate the
extracted trajectories from shadow-teleop and mouse-teleop.
Gaps in the puck’s trajectory indicate where the puck was not
detected, for example, if it was occluded by the robot.

REFERENCES

[1] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choroman-
ski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-language-
action models transfer web knowledge to robotic control,” arXiv preprint
arXiv:2307.15818, 2023.

[3] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, C. Xu, J. Luo et al., “Octo: An open-source
generalist robot policy,” 2023.

[4] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley,
A. Irpan, B. Eysenbach, R. Julian, C. Finn et al., “Actionable models:
Unsupervised offline reinforcement learning of robotic skills,” arXiv
preprint arXiv:2104.07749, 2021.

[5] H. Sikchi, R. Chitnis, A. Touati, A. Geramifard, A. Zhang, and
S. Niekum, “Score models for offline goal-conditioned reinforcement
learning,” arXiv preprint arXiv:2311.02013, 2023.

[6] B. Eysenbach, S. Levine, and R. R. Salakhutdinov, “Replacing rewards
with examples: Example-based policy search via recursive classifica-
tion,” Advances in Neural Information Processing Systems, vol. 34, pp.
11 541–11 552, 2021.

[7] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” arXiv preprint
arXiv:1802.06070, 2018.

[8] S. Park, O. Rybkin, and S. Levine, “Metra: Scalable unsupervised rl
with metric-aware abstraction,” arXiv preprint arXiv:2310.08887, 2023.

[9] T. Zahavy, Y. Schroecker, F. Behbahani, K. Baumli, S. Flennerhag,
S. Hou, and S. Singh, “Discovering policies with domino: Diversity opti-
mization maintaining near optimality,” arXiv preprint arXiv:2205.13521,
2022.

[10] C. Chuck, K. Black, A. Arjun, Y. Zhu, and S. Niekum, “Granger-causal
hierarchical skill discovery,” arXiv preprint arXiv:2306.09509, 2023.

[11] C. Chuck, S. Chockchowwat, and S. Niekum, “Hypothesis-driven
skill discovery for hierarchical deep reinforcement learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 5572–5579.

[12] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i can,
not as i say: Grounding language in robotic affordances,” arXiv preprint
arXiv:2204.01691, 2022.

[13] J. Hejna, R. Rafailov, H. Sikchi, C. Finn, S. Niekum, W. B. Knox,
and D. Sadigh, “Contrastive prefence learning: Learning from human
feedback without rl,” arXiv preprint arXiv:2310.13639, 2023.

[14] H. Sikchi, A. Saran, W. Goo, and S. Niekum, “A ranking game for
imitation learning,” arXiv preprint arXiv:2202.03481, 2022.

[15] H. Sikchi, Q. Zheng, A. Zhang, and S. Niekum, “Dual rl: Unification and
new methods for reinforcement and imitation learning,” arXiv preprint
arXiv:2302.08560, 2023.

[16] T. Ni, H. Sikchi, Y. Wang, T. Gupta, L. Lee, and B. Eysenbach, “f-
irl: Inverse reinforcement learning via state marginal matching,” in
Conference on Robot Learning. PMLR, 2021, pp. 529–551.

[17] E. Catto. [Online]. Available: https://box2d.org/
[18] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany,

and Y. Zhu, “robosuite: A modular simulation framework and benchmark
for robot learning,” arXiv preprint arXiv:2009.12293, 2020.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[20] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight
experience replay,” Advances in neural information processing systems,
vol. 30, 2017.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[22] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta,
and J. G. Araújo, “Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms,” Journal of Machine Learning
Research, vol. 23, no. 274, pp. 1–18, 2022. [Online]. Available:
http://jmlr.org/papers/v23/21-1342.html

[23] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv, 2021.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 2012, pp. 5026–5033.

[25] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[26] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[27] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural computation, vol. 3, no. 1, pp. 88–97,
1991.

[28] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with robotic
imitation learning,” in Conference on Robot Learning. PMLR, 2022,
pp. 991–1002.

[29] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[30] S. K. S. Ghasemipour, R. Zemel, and S. Gu, “A divergence minimization
perspective on imitation learning methods,” in Conference on robot
learning. PMLR, 2020, pp. 1259–1277.

[31] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforce-
ment learning without exploration. corr abs/1812.02900 (2018),” arXiv
preprint arXiv:1812.02900, 2018.

[32] A. Kumar, R. Agarwal, T. Ma, A. Courville, G. Tucker, and S. Levine,
“Dr3: Value-based deep reinforcement learning requires explicit regu-
larization,” arXiv preprint arXiv:2112.04716, 2021.

[33] S. Fujimoto and S. S. Gu, “A minimalist approach to offline rein-
forcement learning,” in Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

[34] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[35] P. Liu, D. Tateo, H. Bou-Ammar, and J. Peters, “Efficient and reactive
planning for high speed robot air hockey,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021, pp.
586–593.

[36] A. Taitler and N. Shimkin, “Learning control for air hockey striking
using deep reinforcement learning,” 2017.

[37] J. Jankowski, A. Marić, and S. Calinon, “Airlihockey: Highly reactive
contact control and stochastic optimal shooting,” 2024.

[38] A. Namiki, S. Matsushita, T. Ozeki, and K. Nonami, “Hierarchical
processing architecture for an air-hockey robot system,” in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp. 1187–
1192.

[39] M. Ogawa, S. Shimizu, T. Kadogawa, T. Hashizume, S. Kudoh, T. Sue-
hiro, Y. Sato, and K. Ikeuchi, “Development of air hockey robot
improving with the human players,” in IECON 2011 - 37th Annual
Conference of the IEEE Industrial Electronics Society, 2011, pp. 3364–
3369.

[40] B. Bishop and M. Spong, “Vision-based control of an air hockey playing
robot,” IEEE Control Systems Magazine, vol. 19, no. 3, pp. 23–32, 1999.

[41] A. AlAttar, L. Rouillard, and P. Kormushev, “Autonomous air-hockey
playing cobot using optimal control and vision-based bayesian tracking,”
in Towards Autonomous Robotic Systems, K. Althoefer, J. Konstantinova,
and K. Zhang, Eds. Cham: Springer International Publishing, 2019, pp.
358–369.

https://box2d.org/
http://jmlr.org/papers/v23/21-1342.html


[42] H. Alizadeh, H. Moradi, and M. N. Ahmadabadi, “Automatic calibration
of an air hockey robot,” in 2013 First RSI/ISM International Conference
on Robotics and Mechatronics (ICRoM), 2013, pp. 107–112.

[43] P. Liu, D. Tateo, H. Bou-Ammar, and J. Peters, “Efficient and reactive
planning for high speed robot air hockey,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2021, pp.
586–593.

[44] K. Tadokoro, S. Fukuda, and A. Namiki, “Development of air hockey
robot with high-speed vision and high-speed wrist,” Journal of Robotics
and Mechatronics, vol. 34, no. 5, pp. 956–964, 2022.

[45] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis,
B. Chen, and D. Zhao, “What went wrong? closing the sim-to-real
gap via differentiable causal discovery,” in Proceedings of The
7th Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, J. Tan, M. Toussaint, and K. Darvish, Eds., vol.
229. PMLR, 06–09 Nov 2023, pp. 734–760. [Online]. Available:
https://proceedings.mlr.press/v229/huang23c.html

[46] “Robot air hockey challenge 2023,” https://air-hockey-challenge.
robot-learning.net/home, accessed: 2024-03-28.

[47] A. Orsula, “Learning to play air hockey with model-based deep re-
inforcement learning,” Air Hockey Challenge at Advances in neural
information processing systems, 2023.

[48] M. E. B. V. de Bakker3Atalay, D. Ö. E. Yagmurlu, M. F. Z. J. D. Yang,
H. Zhou, X. Jia, O. Celik, F. Otto, R. Lioutikov, and G. Neumann, “Air
hockey challenge 2023: Air-hockit team report,” Air Hockey Challenge
at Advances in neural information processing systems, 2023.

[49] F. Minnucci, “Applying rule-based controllers and reinforcement learn-
ing to control a general purpose robot: the air hockey challenge case,”
Air Hockey Challenge at Advances in neural information processing
systems, 2023.

[50] T. Ding, L. Graesser, S. Abeyruwan, D. B. D’Ambrosio, A. Shankar,
P. Sermanet, P. R. Sanketi, and C. Lynch, “Learning high speed precision
table tennis on a physical robot,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022, pp. 10 780–
10 787.

[51] D. D’Ambrosio, N. Jaitly, V. Sindhwani, K. Oslund, P. Xu, N. Lazic,
A. Shankar, T. Ding, J. Abelian, E. Coumans, G. Kouretas, T. Nguyen,
J. Boyd, A. Iscen, R. Mahjourian, V. Vanhoucke, A. Bewley, Y. Kuang,
M. Ahn, D. Jain, S. Kataoka, O. Cortes, P. Sermanet, C. Lynch,
P. Sanketi, K. Choromanski, W. Gao, J. Kangaspunta, K. Reymann,
G. Vesom, S. Moore, A. Singh, S. Abeyruwan, and L. Graesser,
“Robotic table tennis: A case study into a high speed learning system,”
in Robotics: Science and Systems XIX, ser. RSS2023. Robotics:
Science and Systems Foundation, Jul. 2023. [Online]. Available:
http://dx.doi.org/10.15607/RSS.2023.XIX.006

[52] J. P. Hanna, S. Desai, H. Karnan, G. Warnell, and P. Stone, “Grounded
action transformation for sim-to-real reinforcement learning,” Machine
Learning, vol. 110, no. 9, pp. 2469–2499, 2021.

https://proceedings.mlr.press/v229/huang23c.html
https://air-hockey-challenge.robot-learning.net/home
https://air-hockey-challenge.robot-learning.net/home
http://dx.doi.org/10.15607/RSS.2023.XIX.006


Fig. 4: Execution rollouts in Box2D for various tasks. For each first frame the motion of the puck is downwards. Top row: The task where
the policy tries to hit the puck to reach a minimum amount of upward velocity. Middle row: The task where the policy hits the puck into a
crowd of blocks, causes them to spread. Bottom row: The task where the policy moves a puck into a goal region, shown as a green circle.



Tele

Tele

IQL

IQL

BC

BC

Fig. 5: Execution rollouts on the UR5 air hockey setup for policies trained with behavior cloning, IQL with the touching loss, and human
teleoperation demonstrations. Notice that even though humans are trying to achieve multiple bounces, they often hit the puck too erratically
to effectively return, so demonstrations can vary significantly in skill, even after cleaning human failure modes.



Fig. 6: Execution rollouts in Robosuite simulator. The puck is circled in red for emphasis. Policies are trying to touch the puck, hit the puck
with a minimum upward velocity, and juggle the puck.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Av

er
ag

e 
Re

wa
rd

Box2D Task Performance Over Training Steps

Block
Reach V.
Reach
Puck V.
Juggle
Strike Crowd
Hit Goal
Hit Goal V.
Strike
Touch

Fig. 7: Training curve for all tasks in Box2D. For vanilla RL tasks, the rewards are averaged across 5 seeds, while for goal-conditioned RL
we use 1 seed. Rewards are then normalized to to the [0, 1] range with respect to the minimum and maximum reward seen for each task.
Tasks in which performance converges quickly indicate that the task is either trivially easy (reaching a position with the paddle, reaching a
position with the paddle with a desired velocity) or too difficult (moving a block, hitting a puck into a goal position with desired velocity).



(a) (b)

(c)

Fig. 8: Robosuite Training curves. (a): Vanilla RL with PPO, following the implementation of CleanRL library [22]. (b) Behavior Cloning
with data collected the ”expert” policy (a trained PPO policy). (c) IQL [23] using the same offline data, using asymmetric τ set to 0.6.

Fig. 9: Loss (MSE of behavior cloning and Actor Loss for IQL) curves for training using data collected from the real robot. Since humans
did not distinguish puck velocity and juggling, we only trained a single behavior cloning policy (BC Juggle).



(a) Stacked images representing the
video of a trajectory collected with
Shadow-teleop

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

(b) Extracted state trajectory of
puck data collected with Shadow-
teleop

(c) Stacked images representing the
video of a trajectory collected with
Mouse-teleop

0.4 0.2 0.0 0.2 0.4

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

(d) Extracted state trajectory of
puck data collected with Mouse-
teleop

Fig. 10: Puck-hitting trajectories collected with teleoperation modalities. Generally, mouse-teleop is more responsive, and thus participants
could strike the puck more easily. Nonetheless, participant skill was the primary factor when assessing the quality of a gathered trajectory.


	Introduction
	Domain Description
	Components
	Teleoperation
	Environments
	2D
	3D
	Real World

	Tasks
	Offline Data

	Learning Methods
	Experimental Results
	Vanilla Reinforcement Learning
	Behavior Cloning
	Offline RL

	Conclusion
	Task Figures
	Task Descriptions
	Learning Methods
	Preliminaries
	Behavior Cloning
	Reinforcement Learning
	Related Works
	Future Work And Relation with Manipulation Skills
	Training Curves
	Puck Hitting dataset

	References

