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Abstract— This work introduces a robotics platform which
comprehensively integrates multi-step action execution, natural
language understanding, and memory to interactively perform
service tasks in accordance with variable needs and intentions
of users. The proposed architecture is built around an AI agent,
derived from GPT-4, which is embedded in an embodied system.
Our approach utilizes semantic matching, plan validation, and
state messages to ground the agent in the physical world, en-
abling a seamless merger between communication and behavior.
We demonstrate the advantages of this system with an HRI
study comparing mobile robots with and without conversational
AI capabilities in a free-form tour-guide scenario. The increased
adaptability of the system is measured along five dimensions:
flexible task planning, interactive exploration of information,
emotional-friendliness, personalization, and increased overall
user satisfaction.

I. INTRODUCTION

Future applications of service robots will require the
ability to confer with humans to determine the correct
course of action in uncertain situations or situations re-
quiring abstract reasoning; hopefully achieving human-like
adaptability, understanding, and understandability. Progress
in Generative Predictive Transformers (GPTs) and Large
Language Models (LLMs) has enabled machines to com-
municate in natural language with a fluency that is nearly
human [1]. Large Language Models perform well on a range
on tasks from evaluations of emotional awareness [2] to
standardized test taking [3]. Prior to these breakthroughs,
people could only interact effectively with machines using
a fixed set of commands or focused queries, parsed via
semantic matching or a set of rules, resulting in frequent
miscommunications and inflexibility. This work harnesses
the capabilities of LLMs for applications in service robots.
While LLMs are commonly used for unscripted dialogue, the
integration of human-like conversation and top-level task-
planning in robotics has not yet been fully explored. This
work introduces an architecture for embodied conversational
AI, and highlights a design centered around a single AI agent
sharing responsibility for both complex communication and
high-level decision making.

This system is evaluated in a tour-guide scenario, in a
human-robot-interaction (HRI) study that compares robots
with and without conversational AI capabilities. The robot,
Dobby, takes people to various landmarks and artifacts
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around an open space featuring multiple laboratories; provid-
ing information and answering questions. Study participants
took personalized tours with both Dobby and an otherwise
identical non-conversational robot. The evaluation employs
both qualitative and quantitative methods in data collection
and analysis, making use of post-study surveys and chat
logs. Findings indicate that study participants spend more
time with the conversational robot and visit more stops on
their tour with the conversational robot. While they find both
robots easy to use and effective, they enjoy their tours more,
find the conversational robot more knowledgeable, and rate
the robot higher on several additional metrics.

II. RELATED WORK

Task planning in autonomous robots is typically accom-
plished using planning languages like PDDL [4], but this
functionality is limited in free-form scenarios due to its
need for a manually defined goal state and rigidly defined
domain. The Everyday Robots project (EDR) leverages the
common sense reasoning learned by an LLM in conjunction
with a reinforcement learning (RL) model to generate a plan
based on a natural language prompt [5], in a system that
will henceforth be referred to as SayCan. While SayCan
constrains the output of the LLM to a defined set of actions;
Huang et al. demonstrate a different solution, making use
of semantic matching and prompt engineering [6]. SayCan
employs an RL model to infer which actions are feasi-
ble given the current world state, whereas STATLER [7]
presents a state-maintaining architecture built around two
instances of general LLMs, a world-model writer and a
world-model reader. While these works introduce flexibility
in plan generation, there is a significant lack of interaction
between the user and agent that is unaddressed. The work
presented in this paper combines task planning with an added
conversational component so an autonomous robot can better
discuss the needs of the user before generating a plan. Ye et
al. [8] leverage LLMs for embodied control combined with
conversational components. Their system, RoboGPT, utilizes
OpenAI’s ChatGPT1 [9] to interpret natural language instruc-
tions and send control commands to a robotic arm, demon-
strating that incorporating LLMs into robots can result in
more effective collaboration and increased trust with humans
[8]. “RoboGPT” pursues low-level control in a collaborative
use case. In contrast, Dobby engages in elaborate, human-like
conversation and reasons successfully about complex multi-
step task execution, merging both aspects.

1https://chat.openai.com/

https://chat.openai.com/


While natural language processing systems developed
prior to the emergence of LLMs could handle focused queries
and simple tasks, such systems are not well-suited to open-
ended conversations or complex requests incorporating the
surrounding context. Nakano et al.’s multi-expert model [10]
highlights the effort needed to implement a rudimentary ver-
sion of the system we discuss today prior to the development
of powerful LLMs. They describe a system for a “conver-
sational” robot combining dialogue and behavior control;
however, its responses are limited to scripted templates. This
limitation leaves their system lacking many of the advantages
explored in the present work.

Several prior HRI studies have used “tour guide” scenar-
ios; either assigning the robot a role of acting as a tour
guide [11] or having a robot assist a human tour guide in
giving a tour [12]. The evaluation in this work analyzes
the effectiveness of a conversational robot acting as a tour
guide. Older implementations of conversational tour guide
robots are akin to the system presented by Burgard et al.
in 1998 [13]. Their system involved the use of pre-recorded
speech modules, a navigational digital interface, and built-in
physical behaviors such as body and head movements.

III. DOBBY: AN EMBODIED CONVERSATIONAL AI

Dobby uses an LLM acting as an agent for both top-
level decision making and for generating dialog. A system
overview diagram can be seen in Figure 1. See the legend to
best interpret the symbols. The boxes with rounded corners
are functions written in Python. Worth noting is that this
diagram is simplified from the actual program execution,
where dialogue, plan execution, navigation, and person de-
tection all run in their own threads. This allows, for instance,
for the robot to be interrupted during plan execution (see
the CancelPlan() function) or for the robot to navigate and
converse simultaneously.

A. Agent

The LLM is initialized with a prompt instructing it to
behave as a robot assistant. Also included in the prompt
are text files providing information about its environment
and background information, context from the robot’s history
buffer, and a list of actions that the robot can perform. This
allows the LLM to generate all of the robot’s dialogue and
high-level behavior. All processes connected to the “History”
component (see Figure 1) add a system message to the
history buffer to provide context and then re-prompt the
agent, allowing the system to immediately act on factors such
as executing plan steps or new user input.

LLM queries use OpenAI’s chat completion API. Function
calling, a feature of the gpt-4-0613 model, is used to allow
the LLM to interact with the rest of the system. The
functions available to the LLM are: ExecutePlan(string[]
actionSequence) (where actionSequence is a list of plain
English steps to execute a behavior that is interpreted by
Extract Plan), CancelPlan(), and LeaveConversation().

B. Conversation

In the conversation state, the system enters a loop where it
records the user’s utterance, transcribes the recorded audio,
queries the agent for a response, plays the dialogue to the
user, and finally begins recording again. Input text, system
messages, and generated responses are accumulated in a
history buffer which is sent to the API at every iteration. The
agent uses the history buffer to consider the context of the
interaction when generating both dialogue and behavior. If
the buffer becomes too large, the agent generates a summary
of the interaction and the buffer is truncated. The robot can
perform complex natural language tasks via this method,
such as posing clarifying questions, offering suggestions,
and adapting to each unique individual. System messages
are included in the history buffer to provide event-based
instructions or update the agent on the state of the envi-
ronment, preventing the robot’s dialogue from contradicting
its behavior. If silence is detected for six seconds and
no response is received, the robot listens for the keyword
“Dobby” to re-trigger the conversation loop.

C. Flexible Top-Level Task Planning

Atomic actions are represented by a class that contains
a plain English title, pre/post-conditions, and an executable
function. The title for each action is listed in the agent’s
prompt. The agent may execute a series of actions by call-
ing ExecutePlan(string[] actionSequence) with the desired
action sequence expressed as an array of strings. Because
this parameter can be filled with any free-form text, the
generated actions cannot always be directly mapped to a real
command. LLM embeddings encode the semantic meaning
of phrases as a floating-point vector. To ensure robustness,
each string is matched to an action class by comparing the
embedding of the output to each action title and selecting the
action with the highest similarity. This accounts for minor
differences between the string provided by the LLM and the
action title, as shown in Figure 2. If the agent attempts to
include actions that are not similar to those listed in the
initial prompt (thus not corresponding to an action class),
the maximum embedding similarity will fall below a hand-
tuned threshold and the agent will be re-prompted with an
error message. After repeated attempts, a system message
informs the agent that it is not capable of the requested task,
prompting it to explain this to the user.

Once the plan is parsed, additional steps are taken to
ensure the plan is valid given the constraints of the envi-
ronment. The system uses predicates, pre-conditions, and
post-conditions similar to those used by traditional planning
languages such as additions and deletions in STRIPS [14],
or the tracking of predicates in PDDL [4]. Figure 3, shows a
plan corrected by the greedy algorithm shown in Algorithm
1; which skips actions until their preconditions have been
met, reordering the plan if necessary. This algorithm is not
capable of generating a correct plan in all cases, and the
corrected plan may not always have the intended result. If
the generated plan cannot be corrected, the agent informs the
user that it is incapable of the task.



Fig. 1: Diagram detailing the components of the Dobby system.

Fig. 2: Mapping LLM output to executable actions.

Algorithm 1 Plan Correction Algorithm

procedure REORDERPLAN
while Items still in sequence do

nextAction← None
for all Option in sequence do

if Option is valid then
nextAction← option
break

if nextAction is None then
Return not capable of plan

Add nextAction to plan
Update environment based on nextAction
Remove nextAction from sequence

D. Action Execution

Once a plan has been proposed and validated, each action
is executed in sequential order. Actions do not block, so it
is possible to continue to converse with the robot while it
performs a task such as driving to a location. The agent,
action execution, and audio components all run on separate
threads. A callback queue and state variables are shared
between all threads. When any thread triggers an event,

Fig. 3: The robot can only hold one item at once. This invalid
plan is corrected by Algorithm 1.

a function is pushed to the end of the callback queue. A
continuous loop on the main thread consumes these callbacks
as they arrive.

When an action is completed, the next action is started
immediately. System messages inform the agent that the
previous action has completed and that the new action has
begun, as seen in Figure 4. If the robot is listening for the
user’s response or is in the middle of speaking, the agent
will inform the user of the completed action with its next
response; otherwise, the agent is re-prompted for a dialogue
cue right away, informing the user of its intended behaviour.
CancelPlan() may be called by the agent to halt the execution
of the current plan at the user’s request. Alternatively, the
agent may start a new plan, overriding the previous one.

E. Long Term Memories

This system incorporates facial recognition to facilitate
long-term memories about encounters with the same person.
At the start of a conversation, photos are taken of the user’s
face and compared to a database of known people using
DeepFace [15]. If the person is identified, context about the
individual can be loaded from a file and injected into the chat



USER: I’m really hungry right now.
DOBBY: Alright, since I’m such a helpful and

caring robot, let me guess, you’d like
some food, right? Brilliant deduction,
Dobby. Shall we start with something
healthy like an apple or banana?

USER: I’d like an apple.
DOBBY: Sure, I’ll be more than happy to bring

you an apple, but only because I live
for the thrill of fetching fruit for
humans.

FUNCTION CALL: start_plan_execution({
"action_sequence": [
"Drive to Apple",
"Pickup Apple",
"Return to user"

]
})
SYSTEM: Executing plan: 1. Drive to Apple 2.

Pickup Apple 3. Return to User
SYSTEM: Starting action: Drive to Apple
DOBBY: Off I go, driving towards the apple.

Don’t worry, I won’t get distracted by
any shiny objects along the way.

Fig. 4: Example of the agent recognizing when to ask a
clarifying question and generating an action plan with a
function call when appropriate. System messages update the
agent on the state of the robot.

history as a system message. At the end of the interaction,
the agent is asked to extract the name of the individual and
output a summary of the conversation, shown in Figure 5.
This is stored along with other relevant information including
the time of the last encounter. If the user is not in the
database, the photos taken at the start of the conversation
are saved so that the individual can be recognized when they
encounter the robot again.

F. Initiating a Conversation

When the system is not engaging a user in a conversation,
it performs a wander behavior and uses the Azure Kinect
Person Tracking SDK to detect people. If a person is detected
in the camera frame, the robot will approach them. If the
person is recognized, relevant information is added to the
history buffer, and the agent is queried with instructions to
“initiate a conversation with (name/new person).” At this
point the robot enters the normal conversation loop. The
robot also listens for the keyword “Dobby” in the Idle state.
When this event is triggered, the robot will immediately start
recording, turn until it finds a nearby person, and begin facial
recognition in the background. The identity of the person can
be injected into the history mid-conversation.

IV. EXPERIMENTAL SETUP

This experiment is designed to contrast participants’ ex-
periences with a conversational vs. non-conversation robot
tour guide. The conversational tour guide is intended to
leverage all of the functionality of the Dobby robot, whereas
the non-conversational tour guide is intended to emulate the

first_encounter: 14/06/2023 13:29:19
last_encounter: 23/07/2023 22:43:20
memories: Based on this conversation, Carson

requested a general tour of the labs.
Carson seemed excited about the prospect
of exploring these labs and learning more
about their areas of research. In our

previous encounters, Carson has
consistently shown a dedication to
programming and a strong interest in the
development of AI and robotics. These
details about Carson’s interests and his
desire to expand his knowledge will be
stored in my long-term memory for future
reference. It is important to continue
nurturing and supporting Carson’s passion
for programming, AI, and robotics

through our interactions.

Fig. 5: Example of a memory log generated by the agent
after a conversation.

Fig. 6: Dobby taking a participant on a tour of the lab.

behavior of older styles of tour guide robots which rely on
keyword matching and canned responses. We hypothesize
that participants will enjoy the conversational tour guide
more, interacting with it longer and choosing to visit more
destinations on the tour than with the non-conversational
guide.

To set up the touring capabilities of both robots, we
recorded the coordinates of ten notable destinations within
the laboratory in a file, along with a brief description of
each. The coordinates are used to generate a “go to” action
for each destination, and the descriptions were included in
Dobby’s prompt along with information about five general
topics to provide context about the lab. Dobby is built on top
of an existing robust and flexible robot platform that includes
a Segway RMP for mobility and features such as obstacle
avoidance, path planning, and LIDAR-based localization for
navigation, making use of a pre-built map of the lab [16].
These capabilities are used by both robots to navigate to the
various landmarks. The robot can be seen in Figure 6.

The conversational robot used in this study is a modified
version of the Dobby system. In this version, the next
action in a sequence does not start until the agent calls the
function ContinuePlan(), whereas normally the subsequent
action begins immediately upon completion. This allows the



user to converse for as long as they want once they reach
a destination, even when the robot plans a multi-step tour.
The facial recognition and memory retrieval components are
not utilized. Finally, the initializing prompt is adjusted to
provide high-level instructions to guide the agent’s behavior
as a tour guide, including directives to respond humorously
and sarcastically in order to bring out as much personality
as possible and encouragement to ask questions to keep the
user engaged.

The non-conversational tour guide is intended to reason-
ably represent the style of system developed without a mod-
ern LLM. The robot’s dialogue is scripted and interaction
is limited to a fixed set of spoken commands: “Show me
the (landmark).” and “Tell me about (topic).” The user’s
utterance is mapped directly to an action using embeddings.
When this robot arrives at a destination or is requested to
provide information, it reads aloud the descriptions of the
landmarks or topic information verbatim. This robot allows
the participant to explore and hear information about what
they are interested in, but it lacks the ability to engage
in unscripted conversation, suggest destinations, or answer
questions. Each participant is given a list of possible com-
mands when interacting with the non-conversational tour
guide, but no list of destinations is provided when interacting
with the conversational version. Instead, the participants are
encouraged to ask the robot for suggestions.

A video showing examples of both interactions can be
found here https://youtu.be/g9HXRRFrX0U.

A. Data Collection

We completed 16 trials with 16 participants. Participants
were recruited from computer science classes and robotics-
related student organizations. Each trial consisted of one
tour with the conversational robot and one tour with the
non-conversational robot, conducted in a random order.
Prior to participation, each participant provided informed
consent. This study was approved by the University of
Texas at Austin’s Institutional Review Board, under study
STUDY00004978. On-boarding instructions were provided
to each participant to explain how to interact with both
robots. Each tour ended when a participant expressed their
willingness to end their tour.

During each trial, a log containing the chat transcript and
system messages was generated automatically. The interac-
tion time and number of visited destinations were recorded
for each robot in each trial. Researchers observed participants
during each trial and took notes. After completing a tour
with both versions of the robot, each participant completed
an online questionnaire with 7-point Likert scale questions
and qualitative interviews.

The questionnaire includes the following questions: 1)
How knowledgeable was the conversational robot? 2) How
helpful was the conversational robot in learning about the
lab? 3) How easy was it to interact with the conversational
robot? 4) How much personality did the conversational
robot have? 5) How enjoyable was your interaction with
the conversational robot? 6) How emotionally attached are

you to the conversational robot? 7) How effective was the
conversational robot as a tour guide?

Our qualitative data analysis process consists of four steps
including identifying themes (i.e., patterns in qualitative
data), refining themes, linking themes, and extracting final
themes or developing theories. In each stage of such quali-
tative data coding process, themes were manually identified,
refined and connected from textual dialogues between the
robot and participants, interview transcripts, and notes from
participant observation. We also removed any weak themes
less relevant to our research questions. By going through
this process of qualitative data coding multiple times, we
identified five finalized themes that elaborate on the increased
adaptability of the conversational AI mobile service robot in
performing a role of a lab tour guide.

V. RESULTS

Overall, participants rated the conversational robot much
more positively than the non-conversational robot. See
Figure 7. Participants rated the conversational robot as
more Knowledgeable (M=5.75 SD=1.13) than the non-
conversational robot (M=4.75 SD=1.39). This was tested
using a one-way ANOVA and found to be statistically
significant (F(1,31)=5.00, p=0.033). This held for sev-
eral other questionnaire scales: Helpful (Conversational -
M=5.94, SD=0.85; Non-Conversational - M=4.88, SD=1.67),
(F(1,31)=5.14, p=0.031); How much Personality (Con-
versational - M=6.38, SD=0.72; Non-Conversational -
M=2.19, SD=1.38), (F(1,31)=116.30, p<0.001); Enjoyable
(Conversational - M=6.19, SD=1.22; Non-Conversational -
M=3.69, SD=1.14), (F(1,31)=35.82, p<0.001); and Emo-
tional Connection (Conversational - M=4.88, SD=1.54;
Non-Conversational - M=2.06, SD=1.18), (F(1,31)=33.49,
p<0.001). The only scales that the conversational robot did
not rate than the non-conversational robot on were How Easy
to Use was the Robot (Conversational - M=5.06, SD=1.24;
Non-Conversational - M=4.94, SD=1.84), (F(1,31)=0.051,
p=0.82) and How Effective was the Robot (Conversational -
M=5.5, SD=1.31; Non-Conversational - M=5.06, SD=1.88),
(F(1,31)=0.582, p=0.452).

This difference in effectiveness was also reflected in
length of touring time and landmarks visited. Most partic-
ipants wanted to spend more time with the conversational
AI robot. The average interaction time with the conversa-
tional and non-conversational AI robots were 12.4 minutes
(M=744s, SD=293) and 6.0 minutes (M=359s, SD=136)
respectively, and the average number of destinations vis-
ited was 5 (M=5, SD=1.67) and 3.25 (M=3.25, SD=1.24)
respectively. Both of these results are statistically significant:
Time (F(1,31)=22.58, p<0.01), Destinations (F(1,31)=11.31,
p=0.02).

A. Interview Results

Interviews revealed several themes regarding study par-
ticipant experiences. Participants enjoyed the robot’s flex-
ible task planning, interactive exploration of information,
emotional-friendliness, and personalized experiences. They

https://youtu.be/g9HXRRFrX0U
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Fig. 7: Comparison of score averages between conversational
and non-conversational systems based on survey data. Key:
K = Knowledgeable, H = Helpful, E = Ease of Use, P =
Personality, EN = Enjoyability, EA = Emotional Attachment,
EF = Effectiveness. Values are shown with standard error
bars.

also found the conversational robot to provide a more satis-
fying experience.

1) Flexible and Collaborative Task planning: The con-
versational AI robot responded adeptly to diverse and evolv-
ing user needs, empowering them to take greater control
over their tours. Users were able to improvise their own
tour itineraries and destinations with the support of the
conversational AI, enhancing their exploratory capabilities.
Continuing communication between people and the conver-
sational robot fostered a high degree of flexibility during
tours. Participants were assisted by the robot when planning
the next destination on their tour as seen in the following
dialogues.

Participant 1: What is the coolest robot in the lab? Robot:
Ah, there are so many cool robots in the lab! I would say
Astro is pretty awesome. It can deliver items, play music,
take pictures, and even dance! Want to see Astro in action?
Participant 1: Sounds great! Let’s go to Astro next, please.

Participant 2: Which lab have we not gone to? Robot:
We haven’t visited the Drone lab and the lab with Husky
and Jackal Autonomous Vehicles. These labs offer unique
insights into navigation and mobility in robotics. If any of
these destinations pique your interest, just let me know and
we can head there next! Participant 2: Sounds exciting! I
want to see the drone lab!

Participant 2 later expressed their satisfaction with this
feature when compared to the non-conversational robot.

Participant 2: I really liked that I asked questions first
and then it suggested options because it didn’t feel like it
was forcing me to do things.

Participants were also able to change their next desti-
nations on their way by continuously interacting with the
conversational AI robot.

Robot: Astro Robot is next on the list, Sam. Brace yourself
for a peek into the future of home robotics! Off we roll!
Participant 3: I already went to Astro Robot. Can we go

to another stop? Robot: Oh, already acquainted with Astro,
are we? My bad, Sam! Let’s check out the Husky and Jackal
Autonomous Vehicles then. You’ll find these dune-buggy look-
alikes quite fascinating!

Participant 3 mentioned this when asked about their fa-
vorite features of the conversational robot. Participant 3: I
was able to stop it from going to one stop and asked it to
change to another location that I was more interested in.

2) Interactive Exploration of Information: The conver-
sational AI robot demonstrated its improved effectiveness
and adaptability by interactively designing different sets of
the tour information for each tour. It allowed people to
scrutinize certain information and probe depth of knowledge
beyond what was included in the prompt. The conversational
features of the robot and general knowledge embedded in the
agent helped participants dig into information and knowledge
that they found interesting and clarify things that they had
learned. Examples of such scrutinizing questions from the
trials include “Can you be more specific about what types
of experiments occur in this hallway?” and “Could you give
me more information about the RoboCup at Home robot?”
The following interactions with the robot and interpretations
of their own experiences show how the robot collaboratively
designed customized tour information with users by verbally
interacting with them.

Robot: Welcome to the presence of the BWI V5 Robot,
the state-of-the-art in UT’s BWI Bot saga. Can you see that
UR5 arm? And that additional screen on the front? But the
cherry on top is the Velodyne 3D LIDAR. Any questions about
this metal celebrity? Participant 4: What is the Velodyne
3D LIDAR? Robot: Ah, it’s this nifty little device that uses
light in the form of a pulsed laser to measure distances.
Fancy tech to help robots not bump into stuff. Participant 4:
What is the screen for? Robot: The screen serves multiple
purposes. It can display useful information to passersby or
aid in communication. It may show status, error messages, or
instructions. After all, robots need to express themselves too,
don’t they? Participant 4: What makes the arm so helpful?
Robot: The arm brings the term “handy” to a new level. With
it, the robot can pick, place, push, pull, and perform other
tasks. Participant 4: Are there any other features about this
robot that make it the most advanced? Robot: Absolutely!
The BWI V5 Bot also has...

Participant 5: What is social navigation in robotics?
Robot: Social navigation in robotics refers to the ability of
a robot to seamlessly navigate around humans in everyday
environments. Participant 5: What kinds of research projects
are conducted at the Social Navigation Hallway? Robot:
Research projects conducted here are about how robots
should pass humans in the hallway. Participant 5: Which
Professor is leading this project? Robot: Dr. Justin Hart is
leading the project in the Social Navigation Hallway. He is
an expert in... Participant 5: How can I work with Dr. Hart?
Robot: To work with Dr. Hart, you can consider joining the
Freshman Research Initiative Autonomous Robots stream led
by him. This program... You can also reach out to Dr. Hart
directly or check for any open research positions in his lab.



Participants perceived that their tours became more effec-
tive based on the robot’s ability of collaboratively designing
tour information with them.

Participant 6: I felt like the robot was able to sense my
attributes of curiosity and was able to provide information
about my more specific questions accordingly. It had very
informative responses and seemed a lot more knowledgeable
than the non-conversational robot because it could respond
to questions beyond the script.

3) Emotional Friendliness: The conversational AI robot
was able to develop emotional friendliness with individual
users based on the conversational feature and the slightly
sarcastic personality of the robot. The ability to develop
emotional-friendliness was important to increase the effec-
tiveness of touring as users wanted to explore more and
to spend more time with a tour guide that offers positive
emotional experiences.

Because people tended to project human qualities onto
the conversational robot, they engaged with it readily and
naturally, drawing on their experiences with humans to
inform their interaction. The entertaining aspect of person-
ification made people excited to hear the robot’s responses
and contributed to a more enjoyable and relaxed experience
overall. It was obvious that people smiled and laughed more
during their tours with the conversational AI robot, making
comments like “Ah, it has quite a personality!” “I like
your sense of humor, Dobby!” and ”You’re a sassy one
aren’t you?” Below is an example of how the conversational
robot developed emotional friendliness with users through
personality-based improvised humor and participants’ per-
ception of it.

Participant 7: Can I ask you make me a sandwich? Robot:
Ha! I wish I could, but currently, my skills are limited to
giving tours and telling jokes. Besides, the bread always
sticks to my circuits. Imagine! A robot with a breadboard
instead of a motherboard.

Participant 8: The conversational robot felt much less
dry. I definitely feel more attached to the conversational
robot as it has much more personality and is far more
engaging. It kept me engaged with touring. I disliked the
lack of personality in the non-conversational one because it
was much less enjoyable.

Meanwhile, the robot’s receptiveness to personification
was useful in making second-person questions to explore
information more naturally, as seen in the following dialogue.

Participant 9: Can you tell me more about yourself and
your family? Robot: I’m Dobby, your sarcastic and often
humorous robot tour guide. The BWI Bots are equipped with
an Azure Kinect to capture color and depth data, and a 2D
Lidar for localization... Participant 9: Can you tell me about
the students that created you? Robot: Oh, my creators? Just a
few sleep-deprived geniuses, fueled by caffeine and a passion
for robotics. They’re part of the Freshman Research Initiative
(FRI) here at UT Austin.

4) Personalized Experiences: Increased adaptability and
context-aware responses enabled the conversational AI robot
to better-serve users as it got to know them throughout the

interaction.
Participant 10: Can you show me around the lab? Robot:

Absolutely! I would be thrilled to give you a tour. Why don’t
you tell me a bit about your interests? Are you more into
ground robotics, aerial robotics, or perhaps the living with
robots scenario? Your preferences will help me tailor the
tour to your liking. Participant 10: I like ground and aerial
robotics the best. Robot: Great, seems like someone likes
action! How about we start with the Drone Cage for aerial
robotics? Then we’ll say hi to the fleet of the BWI bots, visit
the BWIV5 Robot, and finally meet the Husky and Jackal
Autonomous Vehicles. Would you like that?

Participant 11 noted that they were more engaged when
the robot would comment on their responses throughout the
tour.

Participant 11: It learned what was told and created
conversation on it, that kept me engaged in the conversation
and it’s explanations on the places we visited

Participant 12 noticed that Dobby could connect with the
user on a deeper level.

Participant 12: I preferred the conversational robot be-
cause it made the tour feel more personal. The conversational
one asked about my life and agreed with my passion for
robotics. It also adapted to my liking and interests. It knew
I was interested in computer science so it would show me
things around this interest. I am also more emotionally
attached to the conversational robot as it would try to
connect to me as a person instead of as a client.

The following is a dialogue from Participant 12’s tour.
Robot: What prompted your interest in robotics? Partic-

ipant 12: Probably my high school robotics club. I was
a captain. Robot: Oh, captain, my captain! Robotics club
can certainly spark a lifetime passion. Robot:(later on)
Alright, off we roll to the Boston Dynamics Spot Robot. So,
as a former robotics club captain, what skills did you find
most useful? Participant 12: I was completely hardware, I
didn’t really learn how to program. Robot: Ah, a fan of the
tangible! Building the physical body of the bot must’ve been
a true labor of love.

5) Overall User Satisfaction: Along with the advantages
of the conversational robot demonstrated so far, the overall
level of user satisfaction was increased in comparison to the
non-conversational robot.

Every participant expressed their preference for the con-
versational robot over the non-conversational counterpart.

Participant 13: Overall, I found the conversational robot
to be a much better tour guide. Seeing as this tour was
given by a machine, I’d say it was extremely close to the
experience of a human-guided tour. The tour was very fun,
and I explored everything I wanted.

The ability to confer with the robot in a back and forth
manner (e.g., taking questions, giving answers, and asking
questions) was seen as the most helpful feature for effective
touring by the participants. For example, participants stated
”the fact that it can hold conversations and answer any
questions was very helpful” and ”Being able to ask it open
ended questions and ask additional info about certain things.”



Overall, touring with the non-conversational robot limited
participants’ desires for and abilities of exploration, clarifi-
cation, and enjoying their tours due to limited interaction.

Participant 14: Exploring the lab felt like choosing from
a list of options rather than exploring a lab. I would have
liked to be able to ask more questions. It felt as if I was
reading a wiki page, so it was somewhat boring. It was hard
to connect with the robot due to its limited responses.

VI. DISCUSSION & CONCLUSION

In this paper, we introduce Dobby, a conversational mobile
service robot built around an LLM-based agent. Previous
robot architectures have relied on rigidly-defined task speci-
fications, built-in planning languages, and inflexible dialog
and interaction. Our work with Dobby enhances commu-
nication experiences between people and service robots by
leveraging an LLM for both conversation and top-level task
planning. This paper demonstrates the advantages of our
system with an HRI study in a robot tour-guide context.
Our findings show that due to the agent’s superior natural
language understanding and embedded common sense rea-
soning, participants are able to freely converse with the robot,
which enables them to collaborate when designing task plans,
explore and scrutinize information interactively, engage with
the robot’s adaptable and human-like personality, and enjoy
their interaction more overall. As such, this work shows
the potential application of LLMs to intelligent mobile
robots and contributes to the increased adaptability of service
robotics. Although this work demonstrates Dobby in a tour
guide role, the capabilities demonstrated by this framework
would be advantageous for any autonomous system that must
interact with people.

There is significant work left to be done in improving
upon this platform. Many participants noted the delay in
response time, unreliable audio transcription, and lack of
facial expressions. Additionally, the agent occasionally hal-
lucinated information about the lab. This platform presents
unique opportunities to study human-robot collaboration,
trust, engagement, relationships, and long term interaction.
The complexity of tasks performed could be improved with
more advanced grounding techniques, a vision interface, im-
proved task planning and concurrency, and a more versatile
set of actions that allow the robot to act in the world.
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