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Taxonomy General Trends

• More mature domains:
• Quadrupedal locomotion, some navigation & 

manipulation tasks

• Less mature domains: 
• MoMA, HRI, Multi-robot

• Mature solutions are commonly sim-to-real 
• E.g., locomotion, grasping, in-hand manipulation
• Dense, engineered reward functions
• On-policy is feasible

Open Challenges

• Stability & sample-efficiency of RL algorithms

• Real-world learning 
• Gathering data: safe exploration, reward design, 

environment resets, sample efficiency  
• Hardware design for learning-based systems
• Transfer, multi-task, meta- and lifelong learning

• Long-horizon tasks 
• What skills should the robot learn? 
• How should they be combined? 

• Principled approaches for RL systems
• E.g., reward design, action space choices
• Integration with classical model-based tools

• Benchmarking: standard platforms and problems

• Leveraging Foundation Models
• Path toward generalization, language-conditioning 
• Meta applications: reward design, simulation task 

and asset creation

Locomotion Navigation Stationary Manipulation

Mobile Manipulation Human-Robot Interaction Multi-Robot Interaction

Introduction

Competency-Specific Review

• DRL has achieved major successes in board games, video games, 
recommendation systems

• Controlling real-world robotic systems poses unique challenges
 

• Our survey evaluates current progress of DRL in robotics across 
various competencies, identifying broadly applicable techniques, 
under-explored areas, and common open challenges

(a) Robotic Competencies     (b) Problem Formulation     (c) Solution Method    (d) Level of Success
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• RL has enabled mature quadrupedal locomotion
• Bipedal: dynamics are harder, higher DoF

• Key themes: 
• sim-to-real, heavy randomization,  privileged info

• Future Directions:
• Efficient & safe real-world learning
• Integrating locomotion with downstream tasks, 

i.e., agile navigation or mobile manipulation

• For indoor nav, end-to-end RL excels in simulation 
• But, most successful real-world systems are modular 
• Offline RL has shown promise for outdoor navigation
• Highlight: human-level drone racing

• Future Directions:
• How much of the navigation stack should we learn? 
• Effectively jointly learn navigation & locomotion 
• Safety critical applications (e.g., autonomous driving)

Learning OSC Short-Horizon 
Interactive Tasks

Long-Horizon 
Interactive Tasks

Environment Perception & 
Object Interaction

Long-Horizon Reasoning & 
Partial Observability 

• RL is more successful on more constrained tasks, 
enumerable a priori
• E.g., grasping, in-hand manipulation, non-prehensile
• Allows for zero-shot sim-to-real & dense reward

 
• Future Directions: 

• Integrating priors from classical robotics
    e.g., symmetry, geometry, collision-avoidance

• Learning from human videos
• Scaling to open-world manipulation

• Some initial successes, especially in short-
horizon tasks, often sim-to-real 

• Action space is critical, diverse morphologies  

• Future Directions:
• Multi-tasking
• Long-term memory 
• Safe exploration

• Fewer successes than “single-robot” competencies 
• Hard to collect human-like data 

• Non-Markovian, limited rationality, expensive 

• Future Directions: 
• Enable real-world learning alongside humans 
• Develop realistic human behavior simulation

• Limited successes in cooperative “homogeneous” settings
• E.g., collision-avoidance 

• Challenges in complexity & scalability 

• Future Directions:
• Communication between agents
• Convergence & stability 
• General, non-cooperative settings 
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