

DEEP REINFORCEMENT LEARNING FOR ROBOTICS:

A SURVEY OF REAL-WORLD SUCCESSES

Chen Tang*, Ben Abbatematteo*, Jiaheng Hu*, Rohan Chandra, Roberto Martín-Martín, **Peter Stone**

TO APPEAR IN ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS

ROBOT INTERACTIVE INTELLIGENCE LAB

Deep RL's major successes

- Board games, video games, recommendation systems, ...
- Suggest DRL's potential for controlling robotic systems
- But, real world robotics presents significant challenges

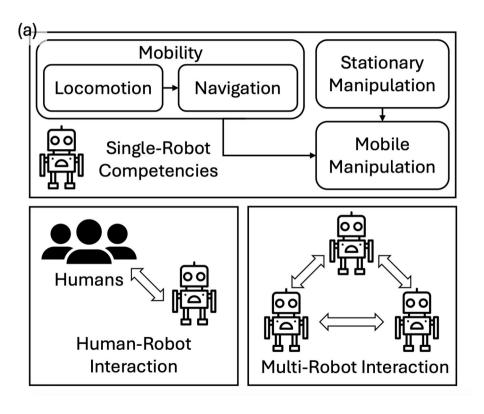
Deep Reinforcement Learning in Robotics

A Survey of Real-World Successes

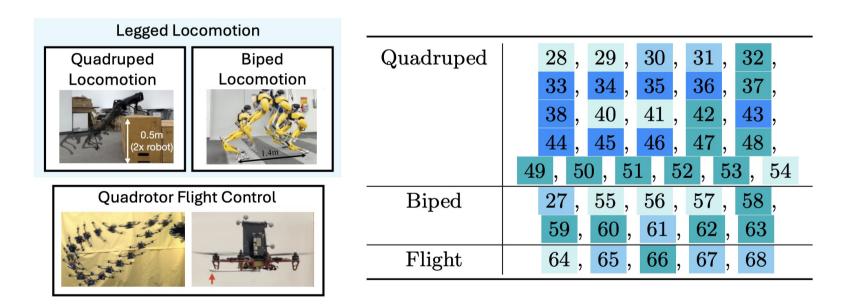
- Goal: comprehensive evaluation of progress of DRL in real-world robotics
- Categorize papers based on
 - Robotic Competency
 - Problem formulation
 - Solution method
 - Level of real-world success
- Assess maturity across domains
- Identify general trends and key open challenges

Taxonomy

- Level of Real-World Success
- Inspired by "Technology Readiness Levels"


Level 5	Deployed on commercialized products
Level 4	Validated under diverse real-world conditions
Level 3	Validated under confined real-world conditions
Level 2	Validated under diverse lab conditions
Level 1	Validated under limited lab conditions
LevelValidated only in0simulation environment	

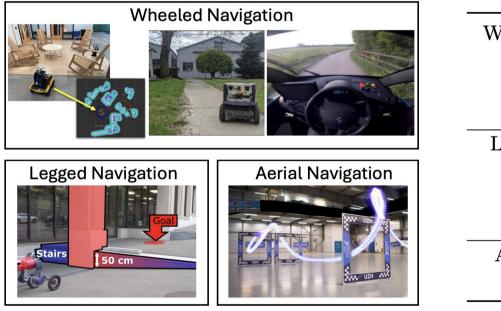
Taxonomy

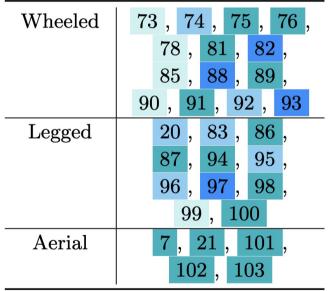

• Competencies surveyed:

- Mobility
- Manipulation
- Interaction with other agents

Locomotion

Limited Lab, Diverse Lab, Limited Real, and Diverse Real




Locomotion

- RL has enabled mature quadrupedal locomotion
 - Bipedal, less so dynamics are harder, higher DoF
 - Hardware accessibility matters
- Lots of zero-shot sim-to-real & privileged information
- Open questions:
 - Efficient & safe real-world learning
 - Integrating locomotion with downstream tasks

Navigation

Limited Lab, Diverse Lab, Limited Real, and Diverse Real

Navigation

- For indoor nav, end-to-end RL excels in simulation
- But, most successful real-world systems are modular
- Agile navigation: Jointly learning navigation and low-level control
- Open questions:
 - How much of the navigation stack should we learn?
 - How do we effectively jointly learn navigation & locomotion?
 - Safety critical applications (e.g., autonomous driving)

Manipulation

	Grasping	108 , 109, 110, 111, 112
Pick-and-place	End-to-end	54, 113 , 114 , 115 , 116 , 117 , 118 ,
	Pick-and-place	$119\ ,\ 120\ ,\ 121\ ,\ 122\ ,\ 123\ ,\ 124\ ,\ 125$
	Assembly	$126\ ,\ 127\ ,\ 128\ ,\ 129\ ,\ 130$
Contact-rich	Articulated Objects	$122 \ , \ 131 \ , \ 132 \ , \ 133$
	Deformable Objects	$134 \ , \ 135 \ , \ 136 \ , \ 137$
In-hand		$138 \ , \ 139 \ , \ 140 \ , \ 141 \ , \ 142$
Non-prehensile		109, 118, 143, 144, 145

Peter Stone, UT

Limited Lab, Diverse Lab, Limited Real, and Diverse Real

Manipulation

- RL is more successful when tasks are constrained, enumerable a priori
 - E.g., grasping, in-hand manipulation; cf. open-world pick-and-place
 - Allows for zero-shot sim-to-real & dense reward design
- Scaling to the open-world will require:
 - Scaling simulation assets & tasks
 - Multi-task, meta-, lifelong learning
 - Autonomous real-world learning (e.g, reward, resets)
 - Learning from human video
 - Leveraging demonstrations

Manipulation (cont.)

- Open questions:
 - How to integrate effective priors? Symmetry? Collision-avoidance?
 - How to put it all together?
 - Most works study one isolated subtask with specific action spaces
 - How do we integrate these abilities?

MoMa

Environment Perception & Object Interaction

Long-Horizon Reasoning & Partial Observability

WBC	152 , 153 , 154 , 155
Short-Horizon	158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169
Long-Horizon	157, 170, 171

Limited Lab, Diverse Lab, Limited Real, and Diverse Real

МоМа

- Some initial successes, especially in short-horizon tasks, often sim-to-real
- Action space is critical, diverse morphologies
- Open questions:
 - Multi-tasking
 - Long-term memory
 - Safe exploration

HRI

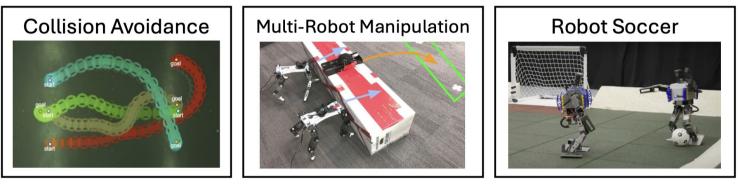
Physical Human-Robot Interaction (pHRI)

Collaborative pHRI	173, 172 , 174 , 180
Non-collaborative pHRI	175, 176 , 177 , 178 , 179
Shared Autonomy	181 , 182 , 183

Peter Stone, UT

Limited Lab, Diverse Lab, Limited Real, and Diverse Real

HRI


Key Takeaways

- Fewer successes than "single-robot" competencies
- Hard to collect human-like data
 - Non-Markovian
 - Limited rationality
 - Expensive
- Future directions:
 - Enable real-world learning alongside humans
 - Develop realistic human behavior simulation

Multi-Robot

Multi-Robot Interaction Examples

Multi-Robot Collision Avoidance	184, 185 , 187 , 188 , 189
Multi-Robot Loco-Manipulation	190
Robot Soccer	191

Limited Lab, Diverse Lab, Limited Real, and Diverse Real

Multi-Robot

- Limited successes in cooperative "homogeneous" settings
 - E.g., collision-avoidance
- Challenges in complexity & scalability
- Critical areas:
 - Communication between agents
 - Convergence & stability
 - General, non-cooperative settings

General Trends

• Mature domains:

- Locomotion, some navigation & manipulation
- Less mature domains:
 - MoMA, HRI, Multi-robot
- Mature solutions are commonly sim-to-real
 - E.g., Locomotion, navigation, grasping, in-hand manipulation
 - Stable, straightforward to simulate
 - Dense, engineered reward functions
 - On-policy is feasible
 - Scalability?
- Without sim, human demos can mitigate exploration challenge

Key Future Directions

- Improving stability & sample-efficiency of RL algorithms
- Real-world learning
 - Gathering data: exploration, reward design, ...
 - Sample-efficiency & transfer
- Long-horizon tasks
 - What skills should the robot learn?
 - How should they be combined?

Key Future Directions (cont.)

• Principled approaches for RL systems

- Reward design, action space choice
- Integration with classical model-based tools
- Benchmarking real-world success
 - Need standard platforms and test problems
- Leveraging Foundation Models
 - Avenue toward stronger generalization, language-conditioning
 - Possibility for reward design, simulation task & asset creation, etc.

		Action Space		8	ROBOT INTERACTIVE	W	R
Application	Low-Level	Mid-Level	High-Level		ROBOT INTERACTIVE	LA	
Locomotion	27, 28 , 29 , 30 ,	31 *, 32 *, 34 , 35 ,	36 *, 60				
	31 *, 32 *, 33 ,	47 , 66 , 67					
	36 *, 37 , 38 , 40,						
	41, 42, 43, 44,						
	45 , 46 , 48 , 49 ,						
	50, 51, 52, 53,						
	54, 55 , 56 , 57 ,						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Navigation	20 90 96 97 *,	7, 21, 73, 74,	76, 81 , 82 , 86 ,	-			
ravigation	20 , 30 , 30 , 31 , 99 , 100 ,	75, 78, 83, 85,	87, 95 *, 96 *, 97 *				
	, 100,	88 , 89 , 91 , 92 ,					
		<mark>93</mark> , 94, 95*, 98,					
		101, 102 , 103					
Manipulation	113, 122 , 127 ,	54 , 110 , 111 , 112 ,	108, 109 , 123 ,	-			
	131, 138 , 139 ,	114, 115 , 116 ,	135 , 136				
	140 , 141 , 142	117, 118 , 119 ,					
		120, 121 , 124 ,					
		125 , 126 , 128 ,					
		129, 130 , 132 ,					
		133, 134 , 137 ,					
M - M	150 154 155	143, 144, 145	100	-			
MoMa	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	168				
	153, 167 , 169 , 158, 162 , 159 ,	161, 171, 157, 170, 165					
	158, 162, 159, 166	170, 100					
HRI	100 175, 176, 177,	173, 174 , 181 ,	172	-			
	178, 179, 180	182, 183	112				
Multi-Robot	184, 185, 187,	189		-			
wuiti-Robot	104, 100, 101,	100					

Peter Stone, UT

Table 1: Categorizing Literature based on Problem Formulation

		Simulator Usage	
Application	Zero-shot Sim-to-Real	Few-shot Sim-to-Real	No Simulator
Locomotion	27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 44 45 46 47 49 50 51 52 55 57 58 59 60	43 , 48 , 56	53, 54
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Navigation	20, 21, 73, 74, 75, 76, 78, 81, 82, 83, 85, 86, 87, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103	7 , 102	88,90,91,92
Manipulation	108 111 123 130 133 134 135 137 138 139 141 142 143 144 145	116 , 131	54 , 109 , 110 , 112 , 113 , 114 , 115 , 117 , 118 , 119 , 120 , 121 , 122 , 124 , 125 , 126 , 127 , 128 , 129 , 132 , 136 , 140
MoMa	153 , 154 , 152 , 155 , 163 , 167 , 169 , 162 , 164 , 161 , 165 , 159 , 166 , 171 , 157 ,	158 , 170	160 , <mark>168</mark>
HRI	172 , 173 , 174 , 175 , 176 , 177 , 179	182	178 , 181 , 180
Multi-Robot Interaction	184, 185, 187, 188, 189, 190, 191		

RODIN ROBOT INTERACTIVE INTELLIGENCE LAB

ð.

Deep Reinforcement Learning in Robotics

A Survey of Real-World Successes

Chen Tang*, Ben Abbatematteo*, Jiaheng Hu*, Rohan Chandra, Roberto Martín-Martín, Peter Stone TO APPEAR IN ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS

Contact: pstone@cs.utexas.edu

