
Disentangled Unsupervised Skill Discovery
for Efficient Hierarchical Reinforcement Learning

Jiaheng Hu
University of Texas at Austin
jiahengh@utexas.edu

Zizhao Wang
University of Texas at Austin
zizhao.wang@utexas.edu

Peter Stone†
University of Texas at Austin, Sony AI

pstone@cs.utexas.edu

Roberto Martín-Martín†

University of Texas at Austin
robertomm@cs.utexas.edu

Abstract

A hallmark of intelligent agents is the ability to learn reusable skills purely from
unsupervised interaction with the environment. However, existing unsupervised
skill discovery methods often learn entangled skills where one skill variable si-
multaneously influences many entities in the environment, making downstream
skill chaining extremely challenging. We propose Disentangled Unsupervised
Skill Discovery (DUSDi), a method for learning disentangled skills that can be
efficiently reused to solve downstream tasks. DUSDi decomposes skills into dis-
entangled components, where each skill component only affects one factor of the
state space. Importantly, these skill components can be concurrently composed
to generate low-level actions, and efficiently chained to tackle downstream tasks
through hierarchical Reinforcement Learning. DUSDi defines a novel mutual-
information-based objective to enforce disentanglement between the influences of
different skill components, and utilizes value factorization to optimize this objective
efficiently. Evaluated in a set of challenging environments, DUSDi successfully
learns disentangled skills, and significantly outperforms previous skill discovery
methods when it comes to applying the learned skills to solve downstream tasks.
Code and skills visualization at jiahenghu.github.io/DUSDi-site/.

1 Introduction

Reinforcement learning (RL) algorithms have achieved many successes in challenging tasks, including
magnetic plasma control [11], automobile racing [54], and robotics [47]. However, applying existing
RL algorithms to every new task in a tabula rasa manner often results in low sample efficiency that
limits RL’s broader applicability [18]. Unsupervised skill discovery holds the promise of improving
the sample efficiency of Reinforcement Learning, by learning a set of reusable skills through reward-
free interaction with the environment that can be later recombined to tackle multiple downstream tasks
more efficiently. In practice, prior unsupervised RL skills are represented as a policy that conditions
on a skill variable to generate diverse behaviors, and have led to successful and efficient learning of
downstream tasks when combined with skill fine-tuning or hierarchical RL skill selection [13, 24, 58].

Despite prior successes, a common limitation of the skills learned by existing unsupervised RL
methods is that they are entangled: any change in the skill variable causes the agent to induce changes
in multiple dimensions of the state space simultaneously. Learning to use and recombine these
entangled skills can be extremely hard for an agent trying to solve downstream tasks, especially in

†Equal supervision.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

jiahenghu.github.io/DUSDi-site/

Prior Works DUSDi (ours)

Figure 1: Consider an agent practicing driving skills by learning to control a car’s speed (length of orange arrow),
steering (curvature of orange arrow), and headlights (blue symbol), (Left) previous unsupervised skill discovery
methods learn entangled skills, where a change in the skill variable can cause all three environment factors to
change (Right) DUSDi learns disentangled skills with concurrent components, where each skill component only
affects one factor of the state space, enabling efficient downstream task learning with hierarchical RL.

complex domains like multi-agent systems or household humanoid robots, where the agent needs to
concurrently change multiple independent dimensions of the state to complete the task. For example,
consider an agent learning to operate a car: if a single skill variable simultaneously changes the speed,
steering, and headlights of the car, it will be extremely challenging for the agent to learn how to
turn on/off the headlights while keeping the car at the right speed and direction. In contrast, humans
naturally have the ability to concurrently and independently adjust the car’s acceleration, steering,
and headlights based on the car’s current speed, surroundings, and lighting conditions. In other words,
humans naturally obtain disentangled skill components where each component only affects one or
few state variables, and can easily recombine these skill components into compositional skills [2] to
control multiple factors simultaneously.

In this work, we aim to create such a mechanism for artificial agents to learn disentangled skills
that facilitate solving downstream tasks. We introduce Disentangled Unsupervised Skill Discovery
(DUSDi), a novel method for unsupervised discovery of disentangled skills. A key insight of
DUSDi is to take advantage of state factorization that is naturally available in unsupervised RL
environments [13, 35, 17] (e.g. speed, direction, and lighting conditions of the car in the driving
example; the state of different objects in a household environment). These factored state spaces
provide a natural inductive bias we leverage for disentanglement: DUSDi decomposes skills into
disentangled components, and encourages each skill component to affect only one state factor while
discouraging it from affecting any other factors. To that end, DUSDi designs a novel intrinsic reward
for unsupervised skill learning based on mutual information (MI) between disentangled skills and
state factors: the learning agent receives high rewards for 1) increasing the MI between a state
factor and the skill component assigned to change it, and 2) for decreasing the MI between that skill
component and all other state factors.

DUSDi introduces a set of technical innovations to tractably and efficiently optimize the proposed
mutual information objective. Once the DUSDi skills are learned, they can be used as the low-level
policy in a hierarchical reinforcement learning (HRL) setting to tackle downstream tasks. Compared
to using entangled skills, a key benefit of using the disentangled DUSDi skills is that they guarantee
more efficient exploration during downstream task learning and therefore often lead to significantly
better performance. Furthermore, the structured skill space of DUSDi opens up additional possibilities
to inject domain knowledge into the learning process to further improve the efficiency of both skill
learning and downstream task learning.

DUSDi is easy to implement and can be integrated into any MI-based unsupervised skill discovery
approach. In our experiments, we integrate DUSDi with DIAYN [13] and evaluate the performance
on four domains: a 2D agent navigation domain, a DMC walker domain, a large-scale multi-agent
particle domain, and a 3D realistic simulated robotics domain. Our experiments indicate that DUSDi
can indeed learn disentangled skills, and significantly outperforms other Unsupervised Reinforcement
Learning methods on solving complex downstream tasks with HRL.

2

reward

(# state factors)

RL
training

env

(a) (b)

intrinsic

disentangled Q prediction for state factor

Figure 2: Two learning stages of DUSDi: (a) in disentangled skill learning stage, DUSDi creates a one-to-one
mapping between state factors and skill components — each disentangled skill component zi only influences
state factor si. DUSDi designs a novel mutual-information-based intrinsic reward to enforce disentanglement
and utilize Q-value decomposition to learn the skill policy πθ efficiently. (b) in the task learning stage, the skill
policy is used as a frozen low-level policy and a high-level policy πhigh is learned to select skill z for every L
steps, by maximizing the task reward rtask.

2 Preliminaries

Factored Markov Decision Process (f-MDP) In this work, we consider unsupervised skill discov-
ery in a reward-free Factored Markov Decision Process. Following Osband and Van Roy [33], Mohan
et al. [32], we define a Factored Markov Decision Process by the tuple M = (S, A, P), where
S = S1 × · · · × SN is a factored state space with N factors such that each state s ∈ S consists of
N state factors: s = (s1, . . . , sN), si ∈ Si. A is the action space, and P is an unknown Markovian
transition model, S ×A → S. Notice that a factored state space is often naturally available in
domains used by prior works [13, 24, 35, 17, 9, 49] as it can naturally represent environments with
separate elements (e.g., objects) that can be changed independently. DUSDi leverages the property
that factors often have sparse dynamics dependencies, which opens up the possibility of learning
disentangled skills to control the state of each factor. Moreover, many downstream tasks are defined
by specific changes in one or a few factors (e.g., changing the state of a single object and not others),
which are easier to learn with disentangled skills. In domains with only image-based (unfactored)
observations, a factored state space can be extracted using disentangled representation learning or
object-centric representation learning methods [31, 20], which we empirically evaluated in Sec. 4.5.

Mutual-Information-Based Skill Discovery Mutual-information-based skill discovery methods,
such as the paradigmatic DIAYN [13], specify the skills with a latent variable z ∈ Z , and learns a
skill-conditioned policy π(a|s, z). The optimization objective these methods use to learn the skills
is to maximize the mutual information (MI) between the state, s, and the skill latent variable, z:
I(S;Z), which incentivizes the agent to reach diverse and distinguishable states. One popular way to
determine the MI, I(S;Z), is to decompose it as I(S;Z) = H(Z)−H(Z | S), where H denotes
entropy. Since the skill variable is typically sampled from a fixed distribution, H(Z) can be assumed
constant: maximizing I(S;Z) is thus equivalent to minimizing H(Z | S). Following the definition
of conditional entropy, −H(Z | S) = Es,z[log p(z|s)], DIAYN proposes to approximate p(z|s) with
a learned discriminator q(z|s) that predicts the skill latent, z, given the state, s.

After discovering the skills, mutual-information-based methods apply them to learn downstream
reward-supervised tasks. Many methods (e.g., DIAYN) adopt a hierarchical RL structure for this
second phase, where the skill policy is used as a low-level “frozen” element, and a high-level policy
πhigh(z|s) learns to sequentially activate skill z based on observations. The high-level policy is trained
to maximize the provided task reward, R, with Z as the action space.

3 Learning Disentangled Skills with DUSDi

Similar to prior works in unsupervised skill discovery, DUSDi implements a two-stage learning
procedure for the agents: in the first phase, DUSDi develops a library of skills without external
reward (Sec. 3.1). The key to DUSDi’s success is to encourage disentanglement between different
skill components through a novel learning objective that restricts the effect of each disentangled skill

3

Algorithm 1 DUSDi Skill Learning

1: Initialize skill policy πθ, discriminators qiϕ, qiψ and value function Qi for each state factor Si.
2: for each skill training episode do
3: Sample skill z ∼ p(z).
4: Collect state transitions with actions from πθ(a|s, z).
5: Sample a batch of (s, a, z) from the replay buffer.
6: for i = 1, . . . , N do
7: Update qiϕ(z

i|si) and qiψ(z
i|s¬i) with discrimination losses.

8: Calculate ri based on Eq. 4
9: Update Qi(s, a, z) with reward ri using SAC.

10: end for
11: Update πθ with Q =

∑N
i=1 Q

i using SAC.
12: end for

component to independent factors. In the second phase, DUSDi leverages the learned skills to solve
downstream tasks through Hierarchical Reinforcement Learning, achieving higher returns

∑
Rtask

than methods with entangled skills (Sec. 3.3). In practice, learning disentangled skills in environments
with many factors can be challenging. To address this challenge, we introduce improvements to
DUSDi’s first phase based on Q-function decomposition (Sec. 3.2). We present the entire DUSDi
pipeline in Fig. 2, and the pseudo-code in Alg. 1.

3.1 Disentangled Skill Spaces and Learning Objective

DUSDi aims to create disentangled skill components that can be easily recombined to solve down-
stream tasks. To that end, DUSDi proposes a novel factorization of the latent skill conditioning
variable, z, into N independent disentangled components such that the latent space Z becomes
Z = Z1 × · · · × ZN . We equate N to the number of state factors and consider zi ∈ Zi the disentan-
gled skill component that affects state factor i. The skill policy π(a|s, z) takes in z ∈ Z , which is a
composition of the skill components.

While the factored latent space Z could be discrete or continuous, we consider discrete skill space in
this paper, and discuss how DUSDi can be applied to continuous skills in Appendix A. We can then
assume that each disentangled component zi takes the form of an integer, zi ∈ [1, k], resulting in a
compositional skill, z, with the form of a N -dimensional multi-categorical vector with kN possible
values. During skill learning, we independently sample each disentangled component zi from a fixed
uniform distribution p(zi), similar to previous works [13, 35].

Given this factored skill space, our goal is to learn a skill policy network, πθ : S ×Z 7→ A,
such that each disentangled component Zi affects and only affects the value of a state factor,
Si. For each disentangled component and state factor pair (Zi,Si), we encourage diverse and
distinguishable behaviors by maximizing their mutual information I(Si;Zi). While this objective
enables a disentanglement skill component to affect the corresponding factor, it does not restrict the
component from affecting other factors. This is undesirable since the resulting skill components
would still be entangled in their effects. To prevent that, we propose to ensure that each skill
component, Zi, minimally affects the rest of the state factors, S¬i, where S¬i denotes the subspace
formed by all other state factor spaces except Si: S1 × . . . ,Si−1 ×Si+1 × · · · × SN . Specifically,
we incorporate an entanglement penalty to minimize, I(S¬i;Zi), which corresponds to the mutual
information between a skill component and all other state factors that it should not affect.

Formally, the skill policy aims to maximize the following objective:

J (θ) =

N∑
i=1

I(Si;Zi)− λI(S¬i;Zi), (1)

where λ < 1 is a hyperparameter that controls the importance of the entanglement penalty relative to
the skill-factor association. We restrict λ to be smaller than one for the following reason: in some
environments, due to intrinsic dynamical dependencies between state factors themselves, controlling

4

a state factor, Si, has to introduce some association between Zi and other factors in S¬i, e.g., when
controlling an object whose manipulation requires the agent to use other objects as tools. In these
cases, as the policy learns to maximize the MI between a skill and a factor, I(Si,Zi), the MI with
other factors, I(S¬i;Zi), may also increase. For these cases, the use of λ < 1 will ensure that the
entanglement penalty does not overpower the association reward, and the policy is still incentivized
to learn disentangled skill components that change Si distinguishably while introducing minimal
changes on other factors. In practice, we simply set λ = 0.1 in all our experiments.

Optimizing DUSDi’s Objective: Directly maximizing the objective in Eq. 1 is intractable. Alter-
natively, we propose to approximate the objective using a variational lower bound of the mutual
information [1]:

I(Si;Zi) = H(Zi)−H(Zi|Si) ≥ C + Ez,s log qiϕ(zi|si), (2)

where C represents the constant value of H(Zi), the entropy of the prior distribution over the skill
latent variable, which does not change during training, and qiϕ is a variational distribution.

Similarly, we can approximate the MI in the entanglement penalty by:

I(S¬i;Zi) ≥ C + Ez,s log qiψ(zi|s¬i), (3)

where qiψ is another variational distribution3. Importantly, when these q approximations perfectly
recover the posterior distribution of zi, we obtain equality in Eq. 2 and Eq. 3. In DUSDi, we
implement the variational distributions, qϕ and qψ, as neural network discriminators mapping input
state factor(s) to the predicted disentangled component values, zi.

To optimize J (θ), we alternate between two steps: 1) performing variational inference to train the
discriminators qiϕ and qiψ through gradient ascent, and 2) using qiϕ and qiψ to learn a disentangled skill
policy πθ through RL by maximizing the following intrinsic reward approximating Eq. 1:

rz(s, a) ≜
N∑
i=1

qiϕ(z
i|si)− λqiψ(z

i|s¬i) (4)

Interestingly, the decomposed nature of our intrinsic reward allows a convenient avenue for shaping
skill behaviors based on domain knowledge. In particular, we can restrict a state factor si to only
take certain values by constraining qiϕ(z

i|si) accordingly. While not the main focus of this work, we
briefly explore this further optimization enabled by DUSDi in Appendix H.

3.2 Accelerating Skill Learning through Q Decomposition

When using reinforcement learning (RL) to optimize the intrinsic reward function defined in Eq. 4,
standard RL algorithms treat the reward function as a black box and learn a single value function
from the mixture of intrinsic reward terms. While this approach may be sufficient for environments
with few state factors, doing so for complex environments with many state factors (large N) often
leads to suboptimal solutions. A key reason is that the mixture of 2N reward terms leads inevitably
to high variance in the reward, making the value of the Q function oscillate. Furthermore, the sum of
reward terms obscures information about each term’s value, which hinders credit assignment.

DUSDi overcomes this issue by leveraging the fact that the intrinsic reward function in Eq. 4 is
a linear sum over terms associated with each disentangled component. Thanks to the linearity of

3While lower-bounding J (θ) requires upper-bounding I(S¬i;Zi), we stick with the variational lower bound
for this term because of the complexity in upper bounding MIs [41].

5

expectation, we can decompose the Q function into N disentangled Q functions as follows:

Qπ(s, a, z) = Eθ[
∞∑
t=0

γtrt]

= Eθ[
∞∑
t=0

γt
N∑
i=1

qiϕ(z
i|si)− λqiψ(z

i|s¬i)]

=

N∑
i=1

Eθ[
∞∑
t=0

γt(qiϕ(z
i|si)− λqiψ(z

i|s¬i))]

=

N∑
i=1

Qi(s, a, z) (5)

where Qi represents each disentangled Q function, one for each disentangled component. The
disentangled Q functions can be then updated only with their corresponding intrinsic reward terms,
ri ≜ qiϕ(z

i|si)− λqiψ(z
i|s¬i). During policy learning, we sum all disentangled Q functions together

to recover the global critic, Qπ , as shown in Fig. 2 (a), top. Compared to learning Qπ directly from all
2N reward terms, learning disentangled Q functions significantly reduces reward variance, allowing
Qπ to converge faster and more stably.

3.3 Downstream Task Learning

Similar to Eysenbach et al. [13], in DUSDi we utilize hierarchical RL to solve reward-supervised
downstream tasks with the discovered skills, as depicted in Fig.2 (b). The skill policy, πθ : S ×Z →
A, acts as the low-level policy and is kept constant while a high-level policy, πhigh : S → Z , learns
to select which skill to execute for L steps using the skill latent variable, z. Thus, the skill latent
conditioning space, Z , acts as the action space of the high-level policy, πhigh. As extensively evaluated
in our experiments, without any additional “ingredient”, performing downstream task learning in the
action space formed by DUSDi skills often results in significantly superior performance compared to
an action space formed by entangled skills. We show that the superior performance of DUSDi can be
explained by more efficient exploration when using the DUSDi skills for hierarchical RL, which we
elaborate on in Appendix B, through analyzing the benefits and search complexity of DUSDi’s skill
space over DIAYN’s.

Depending on the nature of the downstream tasks, we can often take further advantage of the
disentangled skills learned by DUSDi through leveraging its structure. One such scenario is when
the downstream task has a composite reward function consisting of multiple terms. Previous works
[16, 46] have shown that when the causal dependencies from action dimensions to reward terms are
available (e.g., the reward for speed only depends on actions that affect speed), one can use Causal
Policy Gradient (CPG) to decompose the policy update (e.g., only the “speed actions” get updated
by the speed reward) and greatly improve sample efficiency, especially when the dependencies are
sparse. In downstream task learning, with an action space (of the high-level policy) consisting of
the skills learned by DUSDi, we have a convenient way of applying causal policy gradient, where
the causal dependencies between the action dimensions (i.e., skill components) and reward terms
are often sparse and can be easily obtained by examining the state factor that a skill component is
associated with, which we evaluate empirically in Sec. 4.6.

4 Experimental Evaluation

In the evaluation of DUSDi, we aim to answer the following questions: Q1: Are skills learned by
DUSDi truly disentangled (Sec. 4.2)? Q2: Can Q-decomposition improve skill learning efficiency
(Sec. 4.3)? Q3: Do our disentangled skills perform better when solving downstream tasks compared
to other unsupervised reinforcement learning methods (Sec. 4.4)? Q4: Can DUSDi be extended to
image observation environments (Sec.4.5)? Q5: Can we leverage the structured skill space of DUSDi
to further improve downstream task learning efficiency (Sec.4.6)?

6

Table 1: Evaluation of skill disentanglement based on the DCI metric, shown as mean and standard deviation
across skill policies trained with 3 random seeds.

2D GUNNER MULTI-PARTICLE IGIBSON
DUSDi (ours) DIAYN-MC DUSDi (ours) DIAYN-MC DUSDi (ours) DIAYN-MC

Disentanglement (↑) 0.864 ± 0.018 0.016 ± 0.002 0.705 ± 0.037 0.002 ± 0.000 0.833 ± 0.022 0.017 ± 0.006
Completeness (↑) 0.864 ± 0.017 0.024 ± 0.004 0.750 ± 0.041 0.003 ± 0.000 0.834 ± 0.021 0.019 ± 0.005

Informativeness (↑) 0.897 ± 0.012 0.821 ± 0.010 0.849 ± 0.052 0.791 ± 0.032 0.854 ± 0.006 0.752 ± 0.015

4.1 Evaluation Environments

Previous works [13, 34, 35, 44, 23] extensively rely on standard RL environments such as DMC [48]
and OpenAI Fetch [4] to evaluate unsupervised RL methods. However, unlike previous unsupervised
skill discovery methods, DUSDi focuses on learning a set of disentangled skill components that
can be concurrently executed and re-combined to complete downstream tasks. As such, it only
makes sense to examine the performance of DUSDi in challenging tasks that require concurrent
control of many environment entities (e.g. multi-agent systems, complex household robots). Previous
environments lack this property: in DMC for example, while the state and action space can be very
complex, the predominant downstream tasks are just to move the center-of-mass of the agent to
different places. In such cases, there is no need for concurrent skill components, and therefore we
do not expect large gains from using DUSDi’s disentangled skills. Nevertheless, we include an
evaluation on the DMC-Walker [48] environment to demonstrate that our method is also applicable
to those environments, but focus the majority of our evaluation on environments that DUSDi is
designed for, including 2D Gunner, Multi-Particle [30], and iGibson [26].

The 2D gunner is a relatively simple domain, where a point agent can navigate inside a continuous
2D plane, collecting ammo and shooting at targets. Multi-Particle is a multi-agent domain modified
based on [30]. In this domain, a centralized controller simultaneously controls 10 heterogenous
point-mass agents to interact with 10 stations, where each agent can only interact with a specific
station. We evaluate in this domain to test the scalability of our methods to a large number of state
factors. iGibson [26] is a challenging simulated robotics domain with the same action space and
complexity as real-world robots, where a mobile manipulator can navigate in a room, inspect the
room using its head camera, and interact with electric appliances in the room by pointing a remote
control to them and switching them on/off. We evaluate in this domain to examine whether our
method can handle home-like environments with complex dynamics. We provide visualizations and
additional information about each of the environments in Appendix C.

4.2 Evaluating Skill Disentanglement

First, we examine whether the skills learned by DUSDi are truly disentangled (Q1) using the DCI
metric proposed by Eastwood and Williams [12]. The DCI metric consists of three terms, namely
disentanglement, completeness, and informativeness, explained in detail in Appendix F. In the
original work, measuring DCI requires knowing the ground truth generative factors. In our case,
the generative factors are simply the state factors, and we only need to discretize the value of each
state factor to make it compatible for evaluation. For each method on each domain, we collect 100K
rollout steps using the learned skill policy, π(s, z), where the skill is (re)sampled from the uniform
prior distribution, p(z), every 50 steps. These (state, skill) pairs are then used to calculate DCI.

We compare against DIAYN-MC (Multi-channel DIAYN) that uses the same skill representation as
DUSDi but optimizes the DIAYN objective of I(S;Z), and show results in Table 1. Unsurprisingly,
DUSDi significantly outperforms DIAYN-MC, especially on Disentanglement and Completeness,
across all three environments. These results indicate that DUSDi learns truly disentangled skills,
enabling efficient downstream task learning, as we will show in Sec. 4.4. We encourage the readers
to visit our project website for a qualitative visualization of the learned skills.

4.3 Evaluating Skill Learning Efficiency with Q-decomposition

To examine the importance of Q-decomposition (Q2), we measure the performance of optimizing the
DUSDi objective during skill learning with and without a decomposed Q network. We compare the
classification accuracy of the skill discriminators qiϕ(z

i|si), averaged over all skill channels, which

7

(a) 2D Gunner (b) Multi-Particle (c) iGibson

Figure 3: Evaluation of the effect of Q-decomposition in skill learning. The plots depict the mean and standard
deviation of accuracy (↑) when predicting the skill component zi based on the state factor si, computed across 3
training processes. The higher prediction accuracy indicates that the policy learns to control more state factors in
more distinguishable ways, leading to more efficient downstream task learning.

indicates progress towards discovering diverse and distinguishable skills, with higher accuracy being
better. We depict our results in Fig. 3. We observe that Q-decomposition has a similar performance to
the regular Q network in the simplest 2D gunner domain, but significantly outperforms the regular Q
network in domains with more state factors (Multi-Particle) and more complex dynamics (iGibson),
suggesting that Q-decomposition is necessary for scaling towards complex domains.

4.4 Evaluating Downstream Task Learning

The promise of DUSDi is to incorporate disentanglement into skills so that the skills can be effectively
used in downstream task learning. Therefore, the most critical evaluation of our work focuses on
comparing the performance of different unsupervised RL methods on task learning (Q3). We
compare against existing state-of-the-art unsupervised reinforcment learning algorithms, including
DIAYN [13], CIC [24], CSD [35], METRA [36], ICM [37], RND [5], ELDEN [51], and Vanilla
RL [14], where these baselines are further explained in Appendix E.

Similar to the evaluation setting in the URLB benchmark [23], we allow each method to train for
4 million steps without access to reward (i.e., pretraining phase) before the reward is revealed to
the agent and the downstream learning takes place. During the pre-training phase, all methods use
soft actor-critic (SAC) [14] to optimize the intrinsic reward. For all skill discovery methods (i.e.,
DUSDi, DIAYN, CIC, CSD, METRA), a skill-conditioned policy, πθ(a|s, z), is learned during the
pretraining phase. During downstream learning, the skill network is fixed, whereas an upper policy,
πhigh(z|s), is trained using proximal policy optimization (PPO) [43] to optimize the task reward.
Similar to previous works [13, 44], we omit proprioceptive states from the MI optimization for all
skill discovery methods to facilitate more meaningful explorations. For exploration methods (i.e.,
RND, ICM, ELDEN), a policy πθ(a|s) is learned during the pretraining phase on intrinsic reward
and fine-tuned using the task reward during the downstream learning phase. The hyperparameters are
specified in Appendix G.

We evaluate all methods in four environments and 13 downstream tasks, detailed in Appendix D. The
results are depicted in Fig. 4. As expected, DUSDi performs similarly to previous unsupervised RL
methods in the DMC walker environment due to the simplicity in terms of its downstream objectives
(all related to center-of-mass locomotion), but significantly outperforms all previous methods on
domains where downstream tasks require coordinative control of multiple state factors. The most
crucial comparison is between DUSDi and DIAYN. DIAYN is a special case of DUSDi where
there is only one state factor (consisting of the entire state) and one skill component. Therefore
comparing against DIAYN offers a straightforward examination of the effect of disentangled skills
for downstream task learning. DUSDi significantly outperforms DIAYN in all downstream tasks,
demonstrating the effectiveness of using disentangled skills. In general, we found exploration-based
methods to be less capable than skill discovery methods, possibly due to their lack of temporal
abstraction. CIC performs very poorly, likely because the CIC objective does not explicitly encourage
distinguishable skills and instead generates the intrinsic reward solely based on state entropy, making it
very hard for the upper policy to select the right skill. This result again shows the importance of having
a proper skill representation. DUSDi also outperforms CSD and METRA on most downstream tasks,
especially on the more complex and high-dimensional domains, like Multi-Particle. This superiority is
perhaps surprising considering that in our experiments, DUSDi only relies on the simple DIAYN-style
intrinsic reward for skill discovery, but further demonstrates the importance of learning a disentangled
skill space. It is important to notice that many techniques proposed to improve skill discovery quality

8

(a) Walker-run (b) Walker-goal (c) 2DG-unlim (d) 2DG-lim

(e) MP-seq-easy (f) MP-seq-medium (g) MP-seq-hard (h) MP-fp-easy (i) MP-fp-medium

(j) MP-fp-hard (k) IG-look (l) IG-housekeep (m) IG-inspect

Figure 4: Training curves of DUSDi and baselines on multiple downstream tasks (reward supervised second
phase). The plots depict the mean and standard deviation of the return of each method over 3 random seeds.
DUSDi outperforms all baselines that learn entangled skills, converging faster and to higher returns.

(e.g., Baumli et al. [3], Zhao et al. [57]), can be seamlessly incorporated into DUSDi. Therefore, we
expect our method to perform even better as new advances are made in unsupervised skill discovery.

4.5 Extending DUSDi to Image Space

Although this paper primarily focuses on applying DUSDi to factored state space, we can straightfor-
wardly extend it to image space through existing works in factored / object-centric representation
learning [29, 20, 53, 28, 55] (Q4). We empirically illustrate this capability in the Multi-Particle envi-
ronment, where we replace the low-dimensional state observation with 64× 64 image observations.
Specifically, we first pretrain an object-centric encoder following Yang et al. [55], and then use our
method on top of the extracted representation to learn disentangled skills. Hence, essentially, the
skill policy uses images as observation. As shown in Fig. 5, when learning from image observation,
DUSDi achieves similar performance to learning from state space, whereas the baseline methods are
unable to learn these two tasks even when learning from the low-dimensional state space as in Fig. 4.

4.6 Leveraging Structure of DUSDi Skills

While DUSDi can already learn downstream tasks quite efficiently, it is possible to further improve
the sample efficiency of downstream task learning through leveraging the structured skill space of
DUSDi (Q5), as described in the second paragraph of Sec.3.3. Specifically, we apply Causal Policy
Gradient [16] to the Multi-Particle domain, where the causal dependencies between state factors and
reward terms are easy to identify. We present our results in Fig. 6, where the sample efficiency of
downstream task learning is greatly improved thanks to the structured skill space of DUSDi.

5 Related Work

Unsupervised Skill Discovery In unsupervised skill discovery, the goal of an agent is to learn
task-agnostic skills without external rewards. To learn such skills, previous methods propose various
forms of intrinsic reward: (1) maximizing the mutual information between visited states and the skill
variables [13, 44, 6, 24], (2) maximizing the traveled distance along the direction specified by the
skill variables [34–36], (3) learning to reach a diverse set of goals [52, 40, 38]. These skills can be
used to boost the sample efficiency of downstream task learning, for example, (1) using hierarchical
RL where a high-level policy learns to select which skill to execute [13], or (2) using the skill policy
to initialize the task solving policy and then fine-tuning it [24].

9

(a) MP-fp-medium (b) MP-fp-hard

Figure 5: Performance of DUSDi with image ob-
servations on two multi-particle downstream tasks
over three random seeds. With the help of dis-
entangled representation learning, DUSDi effec-
tively learns skills based only on image observa-
tions and leverages the skills to solve challenging
downstream tasks where baseline methods fail.

(a) MP-fp-medium (b) MP-fp-hard

Figure 6: Performance of DUSDi in two multi-
particle downstream tasks when combined with
Causal Policy Gradient (CPG, orange). The disen-
tangled skills of DUSDi provide opportunities for
leverage structure and speed up downstream task
learning, greatly improving the sample efficiency
when learning downstream tasks.

State Space Factorization in RL In RL, there is a long history of leveraging state factorization,
including learning a world model between state factors for planning [22, 50], augmenting data [39],
and providing intrinsic rewards [42, 17, 9]. Relevant to our work are skill discovery methods that
learn to either reach a goal for each controllable object [19, 9] or achieve interactions between a
pair of specified objects [8]. Though these methods achieve disentanglement by influencing one or
a pair of objects during a skill, they do not apply to tasks that require controlling multiple objects
simultaneously, like driving where we need to control the car’s speed and heading directions at the
same time. In contrast, our method can combine disentangled skill components into concurrent skills
[10] to solve a wide range of tasks.

Disentanglement in Skill Learning Inspired by the benefits of compositionality, disentanglement
has been extensively studied, mainly in learning image representations [28]. There are a few works
investigating disentanglement in unsupervised skill discovery. Lee et al. [25] consider a special case
of disentangled skills — for a multi-arm robot, learning independent skills for each arm. However,
they rely on manually factored action spaces which is an assumption that often limits the behavior
of the agent. Kim et al. [21] encourage the disentanglement between different dimensions of the
skill variable by regularizing it with β-VAE objective [15], but Locatello et al. [27] point out that
such regularization is impossible to achieve disentanglement. To learn disentangled skills, Song et al.
[45] learns a decoder from skill variables to state trajectories and their generation factors, which is
then used to train the skill policy through imitation learning. However, their training of the decoder
requires pre-collected trajectories and corresponding generation factors, whereas our method is fully
unsupervised with no expert data.

6 Conclusion

We present DUSDi, an unsupervised skill discovery method for learning disentangled skills by lever-
aging the factorization of the state space. DUSDi designs a skill space that exploits the factorization
of the state space and learns a skill-conditioned policy where each sub-skill affects only one state
factor. DUSDi enforces disentanglement through an intrinsic reward based on mutual information,
and shows superior performance on a set of downstream tasks with naturally factored state spaces
compared to baselines and state-of-the-art unsupervised RL methods.

One limitation of DUSDi is the assumption of access to a factored state space. While a factored state
space is naturally available in many existing RL environments, and can be extracted from images
as we have shown in our experiment (Sec. 4.5), we believe that future advances in disentangled
representation learning will greatly broaden the applicability of DUSDi towards partially observable,
pixel-based environments. Secondly, DUSDi primarily focuses on learning a structured skill space
for more efficient downstream learning, and its exploration capability during skill learning is largely
determined by the specific algorithm used to optimize for our mutual information objective. While
we used DIAYN [13] in this work due to its simplicity, it would be interesting to examine extending
the idea of learning disentangled skills to other skill discovery methods, e.g., Zhao et al. [57], Laskin
et al. [24], including those that are not based on mutual information [35, 56].

10

Acknowledgements This work took place at the Learning Agents Research Group (LARG) and
the Robot Interactive Intelligence Lab (RobIn) at UT Austin. RobIn is supported in part by DARPA
TIAMAT program (HR0011-24-9-0428). LARG research is supported in part by NSF (FAIN-
2019844, NRT-2125858), ONR (N00014-18-2243), ARO (W911NF-23-2-0004), Lockheed Martin,
and UT Austin’s Good Systems grand challenge. Peter Stone serves as the Executive Director of
Sony AI America and receives financial compensation for this work. The terms of this arrangement
have been reviewed and approved by the University of Texas at Austin in accordance with its policy
on objectivity in research.

References
[1] David Barber and Felix Agakov. Information maximization in noisy channels: A variational

approach. Advances in Neural Information Processing Systems, 16, 2003.

[2] André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel,
Daniel Toyama, Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard:
Combining skills in reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

[3] Kate Baumli, David Warde-Farley, Steven Hansen, and Volodymyr Mnih. Relative variational
intrinsic control. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 6732–6740, 2021.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation, 2018.

[6] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and
Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In
International Conference on Machine Learning, pages 1317–1327. PMLR, 2020.

[7] Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu. Varia-
tional empowerment as representation learning for goal-based reinforcement learning. arXiv
preprint arXiv:2106.01404, 2021.

[8] Jongwook Choi, Sungtae Lee, Xinyu Wang, Sungryull Sohn, and Honglak Lee. Unsupervised
object interaction learning with counterfactual dynamics models. In Workshop on Reincarnating
Reinforcement Learning at ICLR 2023, 2023.

[9] Caleb Chuck, Kevin Black, Aditya Arjun, Yuke Zhu, and Scott Niekum. Granger-causal
hierarchical skill discovery. arXiv preprint arXiv:2306.09509, 2023.

[10] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey, 2022.

[11] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):
414–419, 2022.

[12] Cian Eastwood and Christopher KI Williams. A framework for the quantitative evaluation of
disentangled representations. In International conference on learning representations, 2018.

[13] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

11

[15] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations,
2016.

[16] Jiaheng Hu, Peter Stone, and Roberto Martín-Martín. Causal policy gradient for whole-body
mobile manipulation. arXiv preprint arXiv:2305.04866, 2023.

[17] Jiaheng Hu, Zizhao Wang, Peter Stone, and Roberto Martin-Martin. Elden: Exploration via
local dependencies. arXiv preprint arXiv:2310.08702, 2023.

[18] Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martin-Martin, Peter
Stone, Kuo-Hao Zeng, and Kiana Ehsan. Flare: Achieving masterful and adaptive robot policies
with large-scale reinforcement learning fine-tuning. arXiv preprint arXiv:2409.16578, 2024.

[19] Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, Zidong Du, Ling Li, Qi Guo,
Yunji Chen, et al. Causality-driven hierarchical structure discovery for reinforcement learning.
Advances in Neural Information Processing Systems, 35:20064–20076, 2022.

[20] Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. arXiv
preprint arXiv:2303.10834, 2023.

[21] Jaekyeom Kim, Seohong Park, and Gunhee Kim. Unsupervised skill discovery with bottleneck
option learning. arXiv preprint arXiv:2106.14305, 2021.

[22] Thomas Kipf, Elise Van der Pol, and Max Welling. Contrastive learning of structured world
models. arXiv preprint arXiv:1911.12247, 2019.

[23] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,
Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark, 2021.

[24] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter
Abbeel. Cic: Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint
arXiv:2202.00161, 2022.

[25] Youngwoon Lee, Jingyun Yang, and Joseph J Lim. Learning to coordinate manipulation skills
via skill behavior diversification. In International conference on learning representations, 2019.

[26] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui
Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, C. Karen
Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks, 2021.

[27] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, pages 4114–
4124. PMLR, 2019.

[28] Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and
Michael Tschannen. Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348–6359. PMLR, 2020.

[29] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention, 2020.

[30] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Neural Information Processing
Systems (NIPS), 2017.

[31] Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating features for object
discovery. arXiv preprint arXiv:2306.00600, 2023.

[32] Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in reinforcement learning: A
survey and open problems. arXiv preprint arXiv:2306.16021, 2023.

12

[33] Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps.
Advances in Neural Information Processing Systems, 27, 2014.

[34] Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. arXiv preprint arXiv:2202.00914, 2022.

[35] Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsuper-
vised skill discovery. arXiv preprint arXiv:2302.05103, 2023.

[36] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-
aware abstraction. arXiv preprint arXiv:2310.08887, 2023.

[37] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction, 2017.

[38] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pages 7750–7761. PMLR, 2020.

[39] Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976–3990, 2020.

[40] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv preprint
arXiv:1903.03698, 2019.

[41] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages
5171–5180. PMLR, 2019.

[42] Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured
world models yields zero-shot object manipulation. Advances in Neural Information Processing
Systems, 35:24170–24183, 2022.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[44] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

[45] Wonil Song, Sangryul Jeon, Hyesong Choi, Kwanghoon Sohn, and Dongbo Min. Learning
disentangled skills for hierarchical reinforcement learning through trajectory autoencoder with
weak labels. Expert Systems with Applications, page 120625, 2023.

[46] Thomas Spooner, Nelson Vadori, and Sumitra Ganesh. Factored policy gradients: Leveraging
structure for efficient learning in momdps, 2021.

[47] Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. arXiv
preprint arXiv:2408.03539, 2024.

[48] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. Deepmind control suite, 2018.

[49] Zizhao Wang, Jiaheng Hu, Caleb Chuck, Stephen Chen, Roberto Martín-Martín, Amy Zhang,
Scott Niekum, and Peter Stone. Skild: Unsupervised skill discovery guided by local depen-
dencies. In Workshop on Reinforcement Learning Beyond Rewards@ Reinforcement Learning
Conference 2024.

[50] Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone. Causal dynamics learning for
task-independent state abstraction. arXiv preprint arXiv:2206.13452, 2022.

[51] Zizhao Wang, Jiaheng Hu, Peter Stone, and Roberto Martín-Martín. Elden: exploration via
local dependencies. Advances in Neural Information Processing Systems, 36, 2024.

13

[52] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

[53] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. Slotformer: Unsuper-
vised visual dynamics simulation with object-centric models. arXiv preprint arXiv:2210.05861,
2022.

[54] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

[55] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
Disentangled representation learning via neural structural causal models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9593–9602, 2021.

[56] Rushuai Yang, Chenjia Bai, Hongyi Guo, Siyuan Li, Bin Zhao, Zhen Wang, Peng Liu, and
Xuelong Li. Behavior contrastive learning for unsupervised skill discovery, 2023.

[57] Rui Zhao, Yang Gao, Pieter Abbeel, Volker Tresp, and Wei Xu. Mutual information state
intrinsic control. arXiv preprint arXiv:2103.08107, 2021.

[58] Yifeng Zhu, Peter Stone, and Yuke Zhu. Bottom-up skill discovery from unsegmented demon-
strations for long-horizon robot manipulation. IEEE Robotics and Automation Letters, 7(2):
4126–4133, 2022.

14

A Extension to Continuous Skills

For continuous skills, we can simply define each skill component zi as a m-dimensional continuous
vector (and therefore the length of the skill would be m×N , where N is the total number of skill
components). Now we can define the prior distribution for each skill component distribution p(zi) as
an m-dimensional continuous uniform distribution (e.g. U [−1, 1]). Notice that our objective remains
unchanged, as the MI is well-defined no matter whether the skill is discrete or continuous. Lastly,
we need to change the output head of our skill prediction networks q, such that instead of outputting
a categorical distribution, it will output a continuous probability distribution (e.g. a multivariate
Gaussian distribution with diagonal covariance).

B Entangled vs. Disentangled Skill Components for Policy Learning

Compared to entangled skills, the advantages of using disentangled components mainly reside in
an easier exploration in the skill space. For skill spaces of equivalent capacity, the DIAYN latent
skill variable is a single integer between 1 and kN , and the DUSDi skill variable is a N -dimensional
vector with each dimension representing a disentangled component with k possible values. In this
section, we analyze the benefits and search complexity of DUSDi’s space over DIAYN’s for two main
cases: when there are no dynamical dependencies between state factors (optimal case for disentangled
components) and where there are intrinsic dependencies between state factors.

State Factors without Dynamical Dependencies: In this case, for DIAYN to find the correct
skill to execute at the current time step, in the worst case, it needs to iterate through all skills,
resulting in 1-step exploration sample-efficiency of O(kN). In contrast, for DUSDi, as disentangled
components are independent of each other, with one skill trial, the agent can simultaneously observe
the effects of setting each disentangled component as Zi = zi. Hence, for an intelligent agent, to
understand the effects of each disentangled component at the current state, it only needs to sweep
through each disentangled component space with k trials (e.g., setting all disentangled components
Zi = 1, . . . , k). After that, as the effects of each disentangled component are independent, by
compositing disentangled components in novel ways, the agent has the ability to imagine the effects
of all skills, leading to O(k) exploration efficiency.

State Factors with Dynamical Dependencies: When there are dynamical dependencies, we denote
PAi as parent indices of state factors that Si depends on, e.g., when moving a mouse (Si), SPAi

denotes the hand. In such cases, the effect of Zi is conditioned on the value of ZPAi

, and we
need to iterate through all (Zi,ZPAi

) pairs to observe all possible influences on Si. As a result,
the exploration is constrained by the state factor with the largest number of parents. Denoting
|PAi| as the number of parent factors for Si, the exploration sample-efficiency is O(k1+maxi |PAi|).
We can see that the O(k) efficiency when there is no dynamical dependencies is a special case
of maxi |PAi| = 0. Despite lower efficiency than O(k), in many environments, the dynamics of
each state factor only depend on a small number of other factors, i.e., maxi |PAi| ≪ N . Hence,
exploration with disentangled components is still more sample-efficient than using entangled skills.

C Environment Details

We test DUSDi on four environments, where a visualization of each of the environments is presented
in Fig. 7.

2D Gunner: Shown in Fig. 7 (a), the blue star marks the position of the agent, the blue line marks
its shooting direction, the red diamond marks ammo location, and the orange cross marks the target
position. The agent has a 7-dimensional observation space, consisting of 3 state factors: [Agent
Position, Ammo State, Target State]. The action is 5-dimensional, 2 for agent movement, 2 for ammo
pickup, and 1 for shooting direction.

DMC-Walker: Shown in Fig. 7 (b), a 6 degree-of-freedom robot can locomote on a 2D plane through
joint motions. The agent has a 26-dimensional observation space consisting of 3 state factors: [Body
Position, Body Velocity, Robot Proprioception].

15

(a) 2D Gunner (b) DMC Walker (c) Multi-Particle (d) iGibson

Figure 7: Environments Visualization

Multi-Particle: Shown in Fig. 7 (c), the agents are marked by small circles, while the stations are
marked by large circles. Only stations and agents of the same color can interact with each other. The
Multi-Particle environment has a 70-dimensional observation space, consisting of 20 state factors.
The state factors include states for each landmark and states for each agent. The action space is
50-dimensional, with 5 dimensions per agent that control their motions and interactions with the
landmarks.

iGibson: Shown in Fig. 7 (d), iGibson has 42-dimensional observation space consisting of 4 state
factors, including [Agent Location, Electric Appliances State, Object(s) in View, Robot Propriocep-
tion]. The action space is 11-dimensional, consisting of base velocity (2D), head motion (2D), arm
motion (6D), and gripper motion (1D).

D Downstream Tasks

DMC-Walker (Walker):

• Run: In this task, the walker agent is rewarded for moving forward at a particular velocity.

• Goal Reaching: In this downstream task, the agent has to reach randomly generated goal positions.

2D Gunner (2DG):

• Unlimited Ammo (unlim): In this downstream task, a set of targets will randomly appear, where
the agent needs to navigate to a position close to the target and shoot them in order to score. The
ammo is unlimited so the agent does not need to worry about picking up ammo.

• Limited Ammo (lim): This downstream task is different from the “unlimited ammo” in that the
agent starts with no ammo and needs to pick up ammo in order to shoot. Everything else is identical.

Multi-Particle (MP):

• Sequential interaction (seq) (easy, medium, hard): In this task, agents need to sequentially interact
with their corresponding station following an instruction sequence given at the start of each episode.
Interacting with stations in the wrong order will be penalized. The easy version of this task has a
sequence length of 2, while medium and hard have a sequence length of 5 and 8 respectively.

• Food-poison (fp) (easy, medium, hard): In this downstream task, each station will offer either
food or poison to the corresponding agent. Each agent needs to decide whether to interact with
its corresponding station based on a sequence of binary indicators provided to the agents. The
difficulty level has the same meaning as in the sequential interaction task.

iGibson (IG):

• Look around: In this task, the robot needs to look at objects in the room sequentially.

• Appliances inspection: In this task, the robot needs to navigate to different electric appliances,
and test whether each of them is working correctly by pointing a remote control towards it.

• Housekeeping: In this task, the robot needs to manage the electric appliances intelligently. Specifi-
cally, the robot needs to first look at a screen to receive instructions. Depending on the instruction,
the robot needs to turn on / off certain electric appliances using the remote control.

16

E Baseline Methods

During downstream task evaluation, we compared against the following state-of-the-art unsupervised
RL methods:

• DIAYN [13] represents skill variable z as an integer between 1 to kN and learns skills by maximiz-
ing I(S;Z), the MI between Z and all state factors S.

• CIC [24] learns a state representation with contrastive learning and learns skills by maximizing
transition entropy in the representation space.

• CSD [35] learns skills maximizing distance traveled along the direction of z in the state space,
where distance is measured in a controllability-aware manner.

• METRA [36] learn a set of behaviors that collectively cover as much of the state space as possible
through optimizing a Wasserstein variant of the state-skill Mutual Information.

• ICM [37]: encourages visiting novel states by using prediction errors of action consequences as
intrinsic rewards.

• RND [5] encourages visiting novel states by using prediction errors of features computed from a
randomly initialized network as intrinsic rewards.

• ELDEN [17] operates in a factored state space similar to our approach, and encourages visiting
states that induce novel factor dependencies.

• SAC [14] where no pretraining is used, and vanilla RL is directly applied to tackle the downstream
tasks.

F Evaluating Skill Disentanglement Details

The DCI metric consists of three terms, namely disentanglement, completeness, and informative-
ness. In the context of this work, disentanglement (↑) measures, on average, to what extent each skill
component only affects a single state factor. Completeness score (↑) measures, on average, to what
extent each state factor is only influenced by a single skill component. Informativeness score (↑)
measures the repeatability of learned skills: given the skill z, how accurately we can predict which
states will be visited. We refer the reader to the work by Eastwood and Williams [12] for a detailed
discussion of these metrics and how they are calculated.

G Hyperparameters

Skill Dimensions: For all skill learning methods with discrete skills (i.e. DUSDi, DIAYN), we make
sure that they have equivalent capacity. Specifically, for igibson and 2D gunner, each DUSDi skill
consists of 3 skill components, each component with 5 possible values. As a result, DIAYN skill is an
integer between 1 to 125 in these two domains. The only exception is Multi-Particle, where DUSDi
has ten sub-skills, each with 5 possible values. Since skill as an integer between 1 and 510 = 9765625
is obviously challenging for DIAYN to converge, we set the number of discrete skills to be 4096 for
DIAYN. For continuous skills (i.e. CSD, CIC, METRA), we follow the skill dimensions specified in
the original papers (64D for CIC, 3D for CSD and METRA), which were shown to be effective for
the respective methods.

Skill Learning Parameters: All skill learning methods in our baselines use SAC to optimize for
the intrinsic reward, with the same policy and value network architecture. DUSDi applies additional
decomposition and masking to the value networks, as described in Section. 3.2, which is not applicable
to the baseline methods. Due to Q-decomposition, when using the same value network architecture,
DUSDi’s value network capacity is N times of the capacity of other methods’ value networks
(including when comparing the variations of DUSDi, i.e., no decomposition). For a fair comparison,
we also tried to increase value network capacity for other methods to match the capacity for DUSDi,
but found that their skill/task learning performances do not improve significantly. This suggests
(1) that, for skill learning, reward variance, rather than network capacity, is the key reason for no
Q-composition variation of DUSDi to converge slowly, and (2) that, for task learning, disentangled
skills, rather than network capacity, is what make DUSDi significantly outperform baselines.

We present the hyperparameters for SAC in Table. 2. All methods use a low-level step size of L = 50.

17

Table 2: Hyperparameters of Skill Learning.

Name Value

SAC

optimizer Adam
activation functions ReLu

learning rate 1× 10−4

batch size 1024
critic target τ 0.01

MLP size [1024, 1024]
steps per update 2

of environments 4
Temperature α 0.02
log std bounds [-10, 2]

Downstream Hierarhical Learning: For all skill discovery methods, downstream learning of the
skill selection policy is implemented with PPO. We used the same hyperparameters for all methods
across all tasks, as specified in Table. 3.

Table 3: Hyperparameters of Downstream Learning.

Name Value

PPO

optimizer Adam
activation functions Tanh

learning rate 1× 10−4

batch size 32
clip ratio 0.1
MLP size [128, 128]
GAE λ 0.98

target steps 250
n steps 20

of environments 4
of low-level steps L 50

Downstream Finetuning: For all non-skill discovery methods, downstream learning is done using
the same hyperparameters as pretraining (table. 2), replacing the intrinsic reward with the task reward.

H Behavior Restriction of Skills via Domain Knowledge

Due to the decomposable nature of the intrinsic reward of DUSDi, we can conveniently restrict the
behavior of skills by constraining the skill predictor qiϕ(z

i|si) for a particular state factor i. For
example, if we want si to stay within a certain range, we can set qiϕ(z

i|si) to be a uniform distribution
for all si not within this range, effectively discouraging the agent from going out of range. In the
extreme case, we can fully specify the mapping between zi and si, essentially resulting in performing
goal-conditioned RL for state i (as also pointed out in [7]) while performing DUSDi for the rest of
the state factors.

We qualitatively examine this idea in the iGibson domain. By restricting a mobile manipulator to only
locomote in regions that are close to a whiteboard, our robot successfully learns diverse board-wiping
behaviors which are otherwise extremely hard to learn. Visualizations of the learned skills can be
seen on our project website.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper’s main contribution is on unsupervised reinforcement learning for
efficient downstream task learning, which is also the focus of the abstract and introduction
sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are clearly discussed in the last paragraph of conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [Yes]

Justification: The main results are empirical, while the theoretical results are proofed in the
paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided all hyperparameters in Appendix G, as well as our codebase.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided our codebase with detailed instructions. This paper does not use
any existing dataset.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyperparameters are specified in the Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include standard deviation for all quantitative our results (Sec. 4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computer resources in the Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: It conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly cites all environments that we used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Preliminaries
	Learning Disentangled Skills with DUSDi
	Disentangled Skill Spaces and Learning Objective
	Accelerating Skill Learning through Q Decomposition
	Downstream Task Learning

	Experimental Evaluation
	Evaluation Environments
	Evaluating Skill Disentanglement
	Evaluating Skill Learning Efficiency with Q-decomposition
	Evaluating Downstream Task Learning
	Extending DUSDi to Image Space
	Leveraging Structure of DUSDi Skills

	Related Work
	Conclusion
	Extension to Continuous Skills
	Entangled vs. Disentangled Skill Components for Policy Learning
	Environment Details
	Downstream Tasks
	Baseline Methods
	Evaluating Skill Disentanglement Details
	Hyperparameters
	Behavior Restriction of Skills via Domain Knowledge

